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OUTLINE

1. Parametric models : robustness needed
— Optimality is lost if the model is not strictly respected by

the data, which is unavoidable. It leads to :
— Minimize the maximum loss on a neighborhood of the model

(minimax procedures), involving a distance on probability spaces.

2. Non parametric models : function estimation
— Optimal function estimation : best speed of convergence.
— Examples : probability density, spectral density, hazard function.

3. Biomedical applications : diagnosis and survival data
— Diagnosis on sparse contingency tables :

hierarchical log-linear models.
— Censoring and truncation of survival data.

Cox, Frailty and FHT semi-parametric models.

4. No model : neural networks (NN)
— Prediction performance and explainability.
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FOREWORD : distances and divergences

Distances and divergences on probability spaces (E, B, P) and the
relationships between them and information theory play a major role
in statistics. Among them I shall cite

1. Prohorov distance 1 π(P, Q) particularly useful for robustness as
it takes into account rounding and gross errors :

π(P, Q) = inf(ε > 0 : Q(B) ≤ P (Bε) + ε) ∀B ∈ B , E metric(d)
π(P, Q) ∈ [0 , 1] Bε = {z ∈ E : ∃x ∈ E, d(z, x) ≤ ε}.

2. Total variation distance T V (P, Q), more tractable than Prohorov :

T V (P, Q) = sup
B∈B

|Q(B) − P (B)| ∈ [0 , 1] (1)

3. Kullback-Leibler KL(P, Q), a divergence (a distance when symme-
trized), strongly related to information

KL(P, Q) =

∫
log(

dP

dQ
) dP ∈ [0 ∞[ (2)

1. Bretagnolle, Jean et Huber, Catherine. “Lois empiriques et distance de Prohorov”.
Séminaire de probabilités de Strasbourg, vol. 12, p. 332-341 (1978).
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4. Shannon 2 3 (or mutual) information of X and Y :

I(X, Y ) = KL(L(X, Y ), L(X) ⊗ L(Y )) (3)

5. Hellinger distance, h(P, Q), also :

h2(P, Q) =
1

2

∫
(
√

dP −
√

dQ)2 ∈ [0 1] (4)

Depending on the objective, one or the other is used :

1. In robustness : to define the expected neighborhood of the assumed
parametric model.

2. More generally : to define the risk of a procedure and its speed of
convergence as a function of the size of the data set.

2. Bretagnolle, Jean, and Catherine Huber.“Estimation des densités : risque minimax.”
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 47 :119-137, (1979).

3. Russac, Yoan, Claire Vernade, and Olivier Cappé. “Weighted linear bandits for non-
stationary environments.” Advances in Neural Information Processing Systems 32 (2019).
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Relationships between TV and KL 4 :

— Pinsker inequality :

T V (P, Q) ≤
√

1

2
KL(P, Q) (5)

— Tsybakov version of Pinsker inequality :

T V (P, Q) ≤ 1 − 1

2
exp(−KL(P, Q)) (6)

— Bretagnolle-Huber inequality (BH) :

T V (P, Q) ≤
√

1 − exp(−KL(P, Q)) (7)

KL additivity for product distributions allows to define the complexity
of a statistical problem :

KL(P ⊗n, Q⊗n) = n KL(P, Q)

4. Wikipedia : Bretagnolle-Huber Inequality, see also Canonne, Clément L. “A short note
on an inequality between KL and TV.” arXiv preprint arXiv :2202.07198 (2022)
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Figure 1 – Three bounds of TV distance with respect to Kullback distance
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Some other ways to define discrepancy between two probabilities

1. The p-Wasserstein distances
Γ(P, Q) : the set of probabilities on E × E having marginals P and Q.

Wp(P, Q) := inf
γ∈Γ(P,Q)

{
∫

E×E

‖x − y‖p
2 dγ(x, y)} (8)

Properties of Wp

a. Characteristic : it incorporates the geometry of the domain.
b. Associated with an optimal coupling of P, Q related to

optimal tranport (Monge-Kantorovitch).
c. Upper bounds easy : Wp ≤

∫
E×E

‖x − y‖p
2 dγ(x, y)∀γ ∈ Γ(P, Q).

d. W 2
2 easy for product measures : W 2

2 (⊗n
i=1(Pi, Qi)) =

∑n
i=1 W 2

2 (Pi, Qi)
e. Useful for WGAN Neural Networks 5 :
A Generative Adversarial Network (GAN) simultaneously trains two
models, a generator and a discriminator :

5. Martin Arjovsky, Soumith Chintala, Leon Bottou, Wasserstein Generative Adversarial
Networks, 2017
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— the generator learns to output fake samples from an unknown dis-
tribution

— the discriminator learns to distinguish fake from real samples.

2. The f divergences 6 :Df (P, Q) :=
∫

E
f(dP/dQ) dQ

f(t) = t log(t) ⇒ Kullback-Leibler, KL

= 1
2 (

√
t − 1)2 ⇒ Hellinger h2

= |t − 1| ⇒ Total Variation, TV

= (t − 1)2 ⇒ Pearson χ2

=
2(1 − t(1−α)/2)(1 − t(1−β)/2)

(1 − α)(1 − β)
⇀ ⇒ AB divergence

6. Cai, Yuhang and Lim, Lek-Heng, (2022), ”Distances between probability distributions
of different dimensions”. IEEE Transactions on Information Theory, 68 :6, 4020-4031.
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I. PARAMETRIC MODELS : ROBUSTNESS NEEDED

Motivation :

1. A random phenomenon is known to obey a parametric model : its
probability is known up to a finite number of real numbers.

2. A discrepancy between the probability of the phenomenon un-
der study and the observations is unavoidable due to gross errors
and rounding errors. It can be represented by a distance and a corres-
ponding neighborhood of the model.

3. J.W. Tukey showed that optimal procedures for the strict mo-
del loose rapidly their good properties even for an undetectable
deviation.

Solution 7 :
Optimize the worst performance on a neighborhood of the model :
find a minimax procedure. This can be done with a small loss for the strict
model.

7. Peter Jost Huber, Robust Statistics, Wiley (1981).
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Example 1 8 (instability of optimal parametric estimators)

The mean X = (X1 + · · · + Xn)/n of n observations of X ∼ (1 − ε)N(θ, σ2) +
ε(N(θ, 9σ2)) is an efficient ML estimator of θ for ε = 0 (unbiased, minimum
variance). But its efficiency decreases down to 0.7 when ε increases from 0 to
0.10.

Contamination fraction 0.00 0.02 0.05 0.10
ε

Xn efficiency 1.00 0.90 0.80 0.70

Any optimal estimator for any ε ∈ [0.01; 0.10] has efficiency > 0.96.

8. Tukey, John Wilder. “A survey of sampling from contaminated distributions.” Contri-
butions to probability and statistics : 448-485, (1960).
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Example 2 9 (robustify a simple test H0 : P = P0 against H1 : P = P1.)

To minimize the maximum loss over two neighborhoods H0 of P0

and H1 of P1, find a least favorable pair 10 (q0, q1) ∈ H0 × H1 i.e. such
that

p0(
q1

q0
> k) ≤ q0(

q1

q0
> k) ≤ q1(

q1

q0
> k) ≤ p1(

q1

q0
> k) ∀(p0, p1) ∈ H0×H1 (9)

The optimal test of q0 against q1, based on the ratio q1/q0, is minimax
as its performance for testing any p0 ∈ H0 against any p1 ∈ H1 is better than
for testing q0 against q1.

9. Huber-Carol, C. “Asymptotics of robust tests.”, Thèse de doctorat, ETH Zurich, (1970)
10. Huber-Carol, C. Lecture Notes in Maths, 1215, “Robustness Theory”, p.1-128, Sprin-

ger Verlag, (1986)
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II. NON PARAMETRICS : FUNCTION ESTIMATION

Framework :

1. f , unknown function, f ∈ F , F a set of “smooth functions”.

2. P = {Pf : f ∈ F}
3. X ∼ (Pf )⊗n has its values in a measurable space (E, B)⊗n.

f is to be estimated based on observation x of X .

f can be a probability density, the spectral density of a Gaussian process, the
intensity of a Poisson process, the hazard rate of a positive random variable.
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1. Best achievable rate of convergence 11

It is obtained via the relationship between the distance D on G ⊃ F, and the
corresponding distance on P, and the construction inside F of a finite set
F0 (Assouad hypercube or Fano Pyramid) to be discriminated, shown to
be as difficult as the initial infinite dimensional problem : 12

Discrimination of two points distant ∆ ∈ F

If D(f1, f2) ≥ ∆ and U = D(f̂ , f1) and V = D(f̂ , f2), then U + V ≥ ∆
(triangular inequality) leads to two inequalities :

EP (U) + EQ(V ) ≥ ∆
2 exp(−4h2(P, Q))

EP (U) + EQ(V ) ≥ ∆
2 exp(−4KL(P, Q))

leads to a lower bound for the risk of discrimination of the k equidis-
tant points of F0, whose maximum risk is greater than the uniform bayesian
risk.

11. Bretagnolle, Jean, and Catherine Huber. “Estimation des densités : risque minimax.”
Séminaire de probabilités de Strasbourg 12. 342-363 (1978)

12. Huber-Carol, Catherine. “A Cramer-Rao type inequality for estimating a hazard with
censoring.” 2017 Conference Lifetime Data Science on Precision Medicine and Risk Analysis
with Lifetime Data. (2017)
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2.Robust divergence BHHJ for function estimation :

BHHJ density power divergence 13 , is indexed by a positive parameter a :

Da(P, Q) =

∫
{dP 1+a(x)−(1+

1

a
)dQ(x)dP a(x)+

1

a
dQ1+a(x)}dx, a ∈ (0, 1)

a controls the trade-off between robustness and efficiency

BHHJ −−−→
a→0

KL ⇒ Maximum Likelihood,efficient

BHHJ −−−→
a→1

L2 ⇒ Mean square error, robust but not efficient

The small contribution of outliers to L2 distance based on histograms
or kernel density estimates makes this robustness intuitively apparent.

13. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C., 1998. Robust and efficient estimation
by minimising a density power divergence. Biometrika 85, 549–559.
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III. BIOMEDICAL APPLICATIONS : 1. DIAGNOSIS
hierarchical log-linear models

Diagnosis on a sparse contingency table (most cells empty) 14 :

n = 1000 patients
X p = 9 symptoms : ∈ {0, 1}p ⇒ 29 = 512 symptom profiles
M m = 2 diseases : ∈ {0, 1} ⇒ 1024 cells, most of them empty

A2×512 =

[
n11 n12 ............... n1p

n21 n22 ............... n2p

]}
m = 2

︸ ︷︷ ︸
N=2p=512

log(P (X = x|M)) = C+
∑p

j=1 gj(xj) +
∑

j 6=j′ gj,j′(xj , xj′)

+
∑

j 6=j′ 6=k gj,j′,k(xj , xj′ , xk) + · · · + g1,2,··· , p(x1, x2, · · · , xp)

where all expectations of g functions on any argument are 0. Keep interactions
up to order k : cut off all functions of more than k arguments.
k = 1 ⇒ independence of symptoms : easy but irrealistic
k = 2 ⇒ order 2 dependence only
k = 3 ⇒ influence of a third factor on the way two factors interact

14. Huber, Catherine, and Joseph Lellouch. “Estimation in Sparse Contingency Tables.”
International Statistical Review,193-203, (1974)
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Illustration on an artificial example, 2 diseases, 3 symptoms :
— Every symptom is present with probability 1/2 in M1 and in M2 ⇒

none of them is able alone to discriminate M1 and M2.

— Every pair (Zj , Zj′) is uniform on the 4 values for M1 and M2

⇒ none of the 3 pairs (Zj , Zj′) can discriminate M1 and M2.

— But the three of them altogether lead to a perfect diagnosis. :

M = M1 ⇔ (Z1, Z2, Z3) ∈ A := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}

M = M2 ⇔ (Z1, Z2, Z3) ∈ Ac := {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}

This will show again when dealing with the explainability of neural
networks, (cf Shapley values) 15.

15. Owen, Art B., and Clémentine Prieur. “On Shapley value for measuring importance
of dependent inputs.” SIAM/ASA Journal on Uncertainty Quantification : 986-1002, 5.1
(2017).
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2. SURVIVAL DATA ANALYSIS

Specificity of survival data : censoring and truncation

A simple example : survival times of 5 patients, end of the study at
time t0 : survival times y1, y2, y4 of patients P1, P2, P4 are observed :

✲

y1P1

✲

y2P2
✲

y3c3 P3

t3

✲

y4P4

✲

c5 y5 P5

t50

✻

✲
tt0

P3 and P5 are still alive when the study stops at t0 :
y3 and y5 are not observed, they are right censored. Ignore them ?
No, provide the information : y3 ≥ c3 := t0 − t3, y5 ≥ c5 := t0 − t5
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General Censoring and Truncation
A non parametric approach

Truncation of Y by the set B :

B truncates Y if Y is observed only if Y ∈ B.

Censoring of Y by the set A :

Y , not observed, is known to be in A.

Survival data imply three probabilities :

1. Censoring law : Pc

2. Truncation law : Pt

3. Survival law : Ps

Objective :
Estimate Ps in spite of the presence of two nuisance infinite dimensional
parameters Pc and Pt.
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Consistency and speed of convergence are obtained, under regularity as-
sumptions, for the Non Parametric Maximum Likelihood Estimator (NPMLE) 16 17

of the density of Ps, based on the Hellinger bracketing entropy :

H(ε, F , h(µ))= log(N[ ])

where F is a set of densities on (E, B, µ), V (gL, gR) =
{

g : gL ≤ g ≤ gR
}

is
bracketted by (gl, gR), and N[ ](ε, F , h(µ)) is the smallest value of m such
that

F ⊂
m⋃

j=1

V (gL
j , gR

j ), where h(gL
j , gR

j ) ≤ ε, j = 1, . . . , m.

Analogous quantities for other distances, like L2 for example, are defined :

H(ε, F , L2(µ)) = ln N[ ](ε, F , L2(µ)).

16. Huber, Catherine, Valentin Solev, and Filia Vonta. ”Interval censored and truncated
data : Rate of convergence of NPMLE of the density.” Journal of Statistical Planning and
Inference 139.5 : 1734-1749, (2009).

17. Vonta, F., and C. Huber. ”On the estimation of structural parameters in frailty models
for interval censored and truncated data.” Volume 14 No 4 14.4 : 40-49, (2010).
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SEMI-PARAMETRIC SURVIVAL MODELS

Most usual models are based on hazard rate h, the probability that the
event takes place at time t, knowing that it did not take place before

h(t) =
f(t)

S(t)
where S(t) = P (Y ≥ t) survival function

f(t) = −S′(t) density function

1. COX MODEL 18 The hazard rate h is assumed to be equal to a

baseline hazard h0(t) modified by p covariates X = (X1, · · · , Xp) whose
weights are the parameters β = (β1, · · · , βp) to be estimated as well
as h0

19 :

h(t|X) = h0(t) e βT X

Baseline hazard h0 : any function

18. Cox, David Roxbee, and David Oakes. “Analysis of survival data.” Vol. 21. CRC press,
8th edition (1998)

19. Bretagnolle, Jean, and Catherine Huber-Carol.“Effects of omitting covariates in Cox’s
model for survival data.” Scandinavian journal of statistics : 125-138,(1988).
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2. FIRST HITTING TIME model (FHT) or THRESHOLD RE-
GRESSION model (TR) 20

Threshold regression model : three different ways of acting on the
time to onset of the disease for the potentially influential factors :

(a) Initial covariates : they act on the “initial amount of health” :
gender, past family disease history, genetic factors,...

(b) Lifetime covariates : they act on (or testify for) the evolution
of the initial amount of health : smoking habits, biological fea-
tures, environment,...

(c) Occupational exposure : it may accelerate the time to onset
of the considered disease

20. Lee, Mei-Ling Ting. “A survey of threshold regression for time-to-event analysis and
applications.” Taiwanese Journal of Mathematics 23.2, 293-305 (2019).
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The model

The amount of health relative to the disease is a stochastic process H(t) :

H(t|h, µ) = h + µt + B(t) (10)

1. h > 0 the initial amount of health
function of intial covariates.

2. µ < 0 the slope of the process
function of lifelength covariates

3. B(t) a Brownian motion
error term

4. R(t) a non decreasing continuous function on R
+

measuring the acceleration due to occupational exposure
(to asbestos in our case).

The time T to onset of the disease, is defined as the first time H(R(t)) hits 0 :

T (h, µ, R) = inf{t ≥ 0 : H(R(t)|h, µ) ≤ 0} (11)
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Motivating example 21 :
Expected years of life free of lung cancer lost due to occupational
exposure to asbestos on a French case-control study.
The data set
Between 1999 and 2002 in 4 Parisian hospitals, 860 cases, 901 controls, mat-
ched on gender and hspital.

1. Basic information : hospital, gender, past family disease history, to-
bacco, age at interview (calendar time), age at incidence of lung cancer,

2. Asbestos exposure : The occupational history up to age X is measu-
red on each of the successive employments by duration, and probabi-
lity/frequency/intensity of exposure, each with 3 levels.

3. Matching between diseased and controls was done on hospital, gender,
age at interview.

21. Chambaz, Antoine, Dominique Choudat, and Catherine Huber-Carol. “Acceleration,
due to occupational exposure, of time to onset of a disease.” Theory and Practice of Risk
Assessment, Springer International Publishing, 2015.
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A partial result

gender age asbestos family tobacco years lost
Male 65 228 0 1 3.1
Male 57 125 0 1 2.7
Male 60 25 0 1 1.6

Female 41 36 0 1 3.0
Male 66 24 1 1 1.4

Female 61 78 0 0 3.2

Table 1 – Expected number of years free of lung cancer lost due to occupa-
tional asbestos exposure.
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IV NEURAL NETWORKS

A. SIMPLE NEURAL NETWORK

It has a single neurons layer and is a parametric version of a statisti-
cal semi-parametric process called PPRD (Projection Pursuit Regression and
Discrimination).

PROJECTION PURSUIT (PPRD)

a. Regression
The target Y ∈ R is the response variable to X = (X1, · · · , Xd) ∈ Rd. The

PPR Ŷ of Y is defined as :

Ŷ = f̂(X) :=
M∑

m=1

ĝm(ŵT
mX) :=

M∑

m=1

ĝm(Vm) (12)

wm, m = 1, · · · , M are unitary d-dimensional vectors and gm : R → R ridge
functions. Estimations based on an observed training set :(xi, yi), i = 1, · · · , n.

For M big enough, any function can be approximated by (12).
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b. Discrimination : K categories
The response Y is one of K categories and the prediction f̂k(xi) is the proba-
bility of category k when x = xi.

c. Error measurement : KL (Kullback-Leibler) for discrimination

R(θ) :=
∑K

k=1

∑n
i=1(yik − f̂k(xi))

2 quadratic error

RKL(θ) := − ∑n
i=1

∑K
k=1 yik log(f̂k(xi)) crossed entropy

d. Interpretation in terms of the initial inputs is difficult as each
feature Xj is scattered into every linear combination of X.
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NEURAL NETWORK as a SPECIAL CASE of PPRD

Our framework is a discrimination problem : the target Y = (Y1, · · · , YK) is a
category, each Yk being a (0,1 variable) to be predicted by X = (X1, · · · , Xd)

A. A layer of M neurons with entries X produces a prediction Ŷ of Y

using (d + 1) × M coefficients α and (M + 1) × K coefficients β :

Vm := α0 + αT
mX m = 1, 2, · · · , M

Zm = σ(Vm) σ is the activation function
Tk = β0k + βT

k Z k = 1, 2, · · · , K
fk(X) = gk(T ), k = 1, 2, · · · , K

where gk(T ) = eTk∑
K

i=1
eTi

⇒ all gk(T ) are positive and add to 1.

Ŷk := f̂k(X)

is the estimated probability of category k.
B. Minimize the error R(Y , Ŷ ) by an optimal choice of the parameters
w = (α, β), obtained by gradient descent of R with respect to w.
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Possible choices for the activation function σ, smoothed versions of the step
function s(u) = 1 {u ≥ 0} :

σ(u) =
1

1 + e−u
the sigmöıd, the most usual one

σ(u) =
eu − e−u

eu + e−u
hyperbolic tangent (th(u))

σ(a, u) =

{
a(eu − 1) for u < 0

u for u ≥ 0 Exponential Linear Unit (ELU)

σ(a, u) =

{
au for u < 0

u for u ≥ 0 Rectified Linear Unit (ReLU)

σ(a, b, u) = b

{
a(eu − 1) for u < 0

u for u ≥ 0 Scaled Exponential Linear Unit (SELU)

28 / 44



IV COMPARING PREDICTION and INTERPRETATION
for GLM and NN

A. Simulation of a logistic model

1. The simulation :
— 6 simulated risk factors

— 3 relevant risk factors are X = (X1, X2, X3)
— X1, binomial(p=0.3,size=3), coefficient a1 = 1,
— X2, exponential(1), coefficient a2 = 2,
— X3, Poisson(λ = 3), coefficient a3 = −1.

— 3 irrelevant risk factors are Z = (Z1, Z2, Z3) independent of Y
— Z1, binomial(p=0.5, size=2), coefficient b1 = 0,
— Z2, normal(µ = 3, sd = 1), coefficient b2 = 0,
— Z3, Poisson(λ = 5), coefficient b3 = 0.

— The model (including a normal error ε ∼ N (0, 0.1)) :

ln(
P (Y = 1|X = x, Z = z)

P (Y = 0|X = x, Z = z))
= a0 +a1x1 +a2x2 +a3x3 +ε (13)
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2. Prediction performances of GLM (the true model) and NN :

— Size of training set : (2/3) n, leaving (1/3) n for the test set

— Respective correct prediction probabilities for diseased (pd), non
diseased (pnd) and global (pg) on the test set :

Method pd pnd pg CI95%(pd) CI95%(pnd)
GLM 0.833 0.752 0.788 0.827 0.838 0.746 0.758
NN 0.857 0.752 0.808 0.849 0.864 0.742 0.762

Table 2 – Probability of correct predictions due to GLM and NN for diseased
(pd), for non diseased (pnd), global pg and 95% confidence intervals

Conclusion :
Probabilities of correct prediction are similar for GLM and NN.
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3. Interpretation of risk factors impact by GLM

— GLM estimates the weight of every risk factor in x and z :

Risk factor True coeff coeff by GLM p-value
x1 1 1.06 10−10

x2 2 2.04 5 ∗ 10−27

x3 -1 -1.03 5 ∗ 10−28

z1 0 -0.30 0.23
z2 0 0.09 0.40
z3 0 0.10 0.050

Table 3 – Respective weights of risk factors x (relevant) and z (irrelevant)
with corresponding p-values

The weight (the relative importance) of x2 is the highest.
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— Interpretation of risk factors impact by NN
Before permuting each factor in turn, the mean probability to pre-
dict correctly D is

pd = 0.857 95% CI = [0.849, 0.864]
After permutation of each factor in turn the mean probability of
correct prediction decreases for relevant factors, and is stable
for irrelevant ones :

m.x1 m.x2 m.x3 relevant factors
0.842 0.762 0.787 < 0.849
m.z1 m.z2 m.z3 irrelevant factors
0.857 0.856 0.855 ≈ 0.857

Table 4 – Mean correct probability of prediction of occurrence of the disease
pd when doing N=100 permutations of each risk factor x1, x2, x3, z1, z2, z3.

Conclusion :
Relevant factors are identified by NN as well as by GLM. Moreover,
the most influent factor is again x2 : its permutation leads
to the highest decrease of the probability of correct prediction.
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B. Alzheimer data :

1. Description of the data set (from Pitie Salpetriere Hospital, Paris)
— n = 4356 patients, n1 = 142 developed an Alzheimer within 4 years.
— 13 risk factors : age at inclusion, gender, education, cardiac disease,

depress, incapacity, high blood pressure, birth date, three genetic
factors, psychological disease,

— Objective : how to predict who will develop an Alzheimer ?
— Compare neural network (NN) with classical logistic model

(GLM)

P (Y = 1|X = x) =
exp(wT x)

1 + exp(wT x)

— The very unbalanced counts for diseased (142) and controls (4214)
creates difficulties for prediction which can be overcome by dupli-
cation of the diseased 22.

22. Yann Le Cun, personal communication, 2019

33 / 44



2. Prediction performances of GLM and NN for Alzheimer :

Method pd pnd pg CI95%(pd) CI95%(pnd))
GLM 0.73 0.73 0.73 0.71 0.76 0.71 0.75
NN 0.75 0.77 0.76 0.74 0.76 0.76 0.78

Table 5 – Correct predictions due to GLM and NN for dements (pd), for non
dements (pnd), global pg, and 95% confidence intervals after duplication.

3. Interpretation for GLM and NN
— GLM gives an estimation of the weight of every risk factor : age is

compared to age < 70

Age ∈ [70 80] : risk multiplied by 3 (CI95% = [1.6 5.9]
Age > 80 : 8 (CI95% = [4.3 16]
Cardiac disease : 2 (CI95% = [1.2 2.9]
Depress : 2.5 (CI95% = [1.5 3.3]
Incapacity : 3.5 (CI95% = [2.2 5.1]
APOE4 : 2 (CI95% = [1.3 2.8]
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— NN : Risk factors impact for Neural Networks

Permutation pd pnd pg CI95%(pd) CI95%(pnd))
none 0.7553 0.7739 0.7650 0.7412 0.7634 0.7662 0.7798

gene AA 0.7419 0.7724 0.7581 0.7395 0.7442 0.7699 0.7749 ≈
gene AG 0.7457 0.7751 0.7613 0.7418 0.7495 0.7717 0.7786 ≈

age 0.7098 0.7410 0.7264 0.7057 0.7139 0.7338 0.7481 ↓
APOE4 0.7341 0.7629 0.7494 0.7289 0.7393 0.7594 0.7665 ↓

cardiac disease 0.7446 0.7748 0.7606 0.7401 0.7491 0.7721 0.7775 ≈
gene CC 0.7473 0.7779 0.7635 0.7428 0.7518 0.7747 0.7811
depress 0.7381 0.7671 0.7535 0.7343 0.7420 0.7636 0.7706 ↓

education 0.7473 0.7772 0.7632 0.7444 0.7503 0.7748 0.7797 ≈
gender 0.7447 0.7758 0.7612 0.7403 0.7490 0.7725 0.7792 ≈

Hypertension 0.7510 0.7808 0.7668 0.7457 0.7564 0.7765 0.7852 ≈
Incapacity 0.7282 0.7609 0.7455 0.7243 0.7320 0.7584 0.7634 ↓

psychotropes 0.7419 0.7724 0.7581 0.7395 0.7442 0.7699 0.7749 ≈
gene TC 0.7465 0.7773 0.7628 0.7450 0.7480 0.7748 0.7799 ≈

Table 6 – Effect, on prediction ability, of permutation of each risk factor.
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CONCLUSIONS and PERSPECTIVES

1. Prediction and interpretation

(a) Prediction performances :
similar in our case of moderate size data.

(b) Interpretation :
— Easy for linear models in statistics (GLM) :

influence of each factor measured by its estimated coefficient.
But it fails in our artificial diagnosis example while NN
succeeds.

— Uneasy for non linear approaches :
NN (in AI), a parametric version of PPRD
Semi-parametric PPRD model (in statistics) :

The model changes when the vicinity of the explanatory
variables (the entries) changes. This leads to have global
and local explanations.
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2. Two important remarks

(a) NN may be implemented to solve statistical models
An example is Cox model revisited by Neural Networks 23

A NN is used to minimize a function analog to −Lc but where the
linear function wT x is replaced by a nonlinear one hθ(x) :

Lc(w) =
∏

i δi
e

w
T

xi∑
j:tj ≥ti

e
w

T
xj

LNN (θ) = − ∏
i δi

e
hθ(xi)∑

j:tj ≥ti
e

hθ (xj )

The loss function minimized by the NN with parameters θ is −LNN (θ).

23. Katzman, Jared L., et al. “DeepSurv : personalized treatment recommender system
using a Cox proportional hazards deep neural network.” BMC medical research methodology
18.1 : 1-12, (2018).
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(b) NN take care of big data and overparameterization

i. Classical statistics need to reduce the dimension of big
data
Numerous devices (most are linear) :
PCA (Principal Component Analysis), SVD (Singular Value
Decomposition), MDS (MultiDimensional Scaling).

ii. Classical statistics need to penalize overparameteriza-
tion
In classical parametric statistics, the model P := PΘ is defined
up to a set of parameters θ ∈ Θ ; increasing the number p of
parameters may lead to a perfect fit to the training set which
may decrease the predictive ability on a new sample : a pe-
nalization is applied, Lasso (L1 norm) or ridge (L2 norm)
penalizations.

iii. Overparameterization seems to cause no major problem
to NN
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It has been observed that, in deep learning, one can simulta-
neously
— fit perfectly the training set (empirical risk equals 0),
— have an efficient predictive ability on a new sample.
In a recent paper 24, the authors have a theoretical proof of this
surprising phenomenon in a special case (p. 36-40, a two layers
network) under certain conditions.

3. Importance of the nonlinearity
— Role of the activation function.

The nonlinearity of the NN approach is due to the activation func-
tion σ.

— Nonlinear reduction method : Isomap
In a statistical setting, among the numerous devices whose purpose
is to reduce the dimension (PCA, SVD , MDS ) most of them are
linear.

24. P.L. Bartlett, A. Montanari, A. Rakhlin, “Deep Learning : a statistical viewpoint”,
arXiv, 89 pages, March 16, (2021).
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However, based on the K nearest neighbours (j1, j2, · · · , jK)
of every point i in the input space X , assumed to be a metric space,
(Rd in general), a weighted graph is built, the weight of each
edge (i, jk) being equal to d(i, jk), and a geodesic distance :

the geodesic distance of any pair of points (i, j) in the graph
being the length of the minimum path between them.

This leads to discover the structure of the data, which may be a
manifold rather than a linear subspace as is the case in PCA, SVD
and also MDS, which constitutes my present research (SLALOM :
Statistical Learning and Low Order Manifolds).
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