DIVERGENCE DE RÉNYI EN CRYPTOGRAPHIE REPOSANT SUR LES RÉSEAUX EUCLIDIENS

Adeline Roux-Langlois

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

Cryptography

Let's start with a simple example: you want to send a message to someone.

Two possibilities:

- Either you share a secret key (AES...),
- Either you don't
 - \Rightarrow public key cryptography (RSA...).

Solve a difficult algorithmic problem ⇔ Adver Example: factorisation

- Solving those problems needs an exponential complexity on a classical computer.
- Shor's algorithm (1995): **polynomial time on a quantum computer**.

Post quantum cryptography

\rightarrow Need for alternatives

- Post-quantum secure, efficient,
- New functionalities, different types of constructions.
- \rightarrow Lattice-based cryptography: security relies on hard problems on lattices.

Post quantum cryptography

\rightarrow Need for alternatives

- Post-quantum secure, efficient,
- New functionalities, different types of constructions.
- \rightarrow Lattice-based cryptography: security relies on hard problems on lattices.

► Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\},\$ $(\mathbf{b}_i)_{1 \le i \le n}$ basis of $\mathcal{L}(\mathbf{B}).$

► Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\},\$ $(\mathbf{b}_i)_{1 \le i \le n}$ basis of $\mathcal{L}(\mathbf{B}).$

- ► Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\},\$ $(\mathbf{b}_i)_{1 \le i \le n}$ basis of $\mathcal{L}(\mathbf{B}).$
- λ_1 norm of the shortest vector,
- ► Approx SVP_{γ}: Given $\mathcal{L}(\mathbf{B})$, find a non zero $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \le \gamma \lambda_1(\mathcal{L}(\mathbf{B}))$.

- ► Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\},\$ $(\mathbf{b}_i)_{1 \leq i \leq n}$ basis of $\mathcal{L}(\mathbf{B}).$
- λ_1 norm of the shortest vector,
- ► Approx SVP_{γ}: Given $\mathcal{L}(\mathbf{B})$, find a non zero $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \le \gamma \lambda_1(\mathcal{L}(\mathbf{B}))$.

At the heart of lattice-based cryptography the Learning With Errors problem

Introduced by Regev in 2005

Problem: solve a linear system with noise.

Find $(s_1, s_2, s_3, s_4, s_5)$ such that:

$s_1 + 22s_2 + 17s_3 + 2s_4 + s_5$	\approx	16	$\mod 23$
$3s_1 + 2s_2 + 11s_3 + 7s_4 + 8s_5$	\approx	17	$\mod 23$
$15s_1 + 13s_2 + 10s_3 + 3s_4 + 5s_5$	\approx	3	$\mod 23$
$17s_1 + 11s_2 + 20s_3 + 9s_4 + 3s_5$	\approx	8	$\mod 23$
$2s_1 + 14s_2 + 13s_3 + 6s_4 + 7s_5$	\approx	9	$\mod 23$
$4s_1 + 21s_2 + 9s_3 + 5s_4 + s_5$	\approx	18	$\mod 23$
$11s_1 + 12s_2 + 5s_3 + s_4 + 9s_5$	\approx	$\overline{7}$	$\mod 23$

~ With an arbitrary number of equations.

The Learning With Errors problem

 LWE_q^n

Search version: Given $(\mathbf{A}, \mathbf{b} = \mathbf{As} + \mathbf{e})$, find **s**. Decision version: Distinguish from (\mathbf{A}, \mathbf{b}) with **b** uniform.

Using LWE to build provable constructions - theory

Cryptography and security proof

Use of reductions in security proof:

- ► To study the hardness of a problem (for example LWE),
- ► To show the security of a cryptographic scheme.

When involving distributions, **the standard approach** is to use the statistical distance (SD) as measure of closeness:

$$\Delta(D_1, D_2) = \frac{1}{2} \sum_{x \in \text{Supp}(D_1)} |D_1(x) - D_2(x)|,$$

and to apply the probability preservation property of SD:

▶ For any event E, $\Pr_{D_2}[E] \ge \Pr_{D_1}[E] - \Delta(D_1, D_2)$,

- ▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₂, find **s**.
- Event S = success of an attack against LWE, $Pr_D[S]$ is its probability under D.

- ▶ LWE_{D1}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₂, find **s**.
- Event S = success of an attack against LWE, $Pr_D[S]$ is its probability under D.
- If LWE_D is an hard problem, then $\varepsilon = \Pr_D[S]$ is negligible.

- ▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₂, find **s**.
- Event S = success of an attack against LWE, $Pr_D[S]$ is its probability under D.
- If LWE_D is an hard problem, then $\varepsilon = \Pr_D[S]$ is negligible.
- ► Reduction from LWE_{D_2} to LWE_{D_1} , we want: (LWE_{D_2} is hard $\Rightarrow LWE_{D_1}$ is hard) which means ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.

- ▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₂, find **s**.
- Event S = success of an attack against LWE, $Pr_D[S]$ is its probability under D.
- If LWE_D is an hard problem, then $\varepsilon = \Pr_D[S]$ is negligible.
- ► Reduction from LWE_{D_2} to LWE_{D_1} , we want: (LWE_{D_2} is hard $\Rightarrow LWE_{D_1}$ is hard) which means ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.
- By the probability preservation property of SD, we have $\varepsilon_2 \geq \varepsilon_1 \Delta(D_1, D_2)$.

- ▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₂, find **s**.
- Event S = success of an attack against LWE, $Pr_D[S]$ is its probability under D.
- If LWE_D is an hard problem, then $\varepsilon = \Pr_D[S]$ is negligible.
- ► Reduction from LWE_{D_2} to LWE_{D_1} , we want: (LWE_{D_2} is hard $\Rightarrow LWE_{D_1}$ is hard) which means ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.
- By the probability preservation property of SD, we have $\varepsilon_2 \geq \varepsilon_1 \Delta(D_1, D_2)$.
- $\Delta(D_1, D_2)$ negligible then gives a reduction.

Using the Rényi divergence

In some cases, the probability preservation property may not be tight.

Let D_1, D_2 be two discrete probability distributions.

Statistical distance $\Delta(D_1, D_2) = \frac{1}{2} \sum_{x \in \text{Supp}(D_1)} |D_1(x) - D_2(x)|,$

Rényi divergence
$$R_2(D_1,D_2) = \sum_{x \in \mathsf{Supp}(D_1)} rac{D_1(x)^2}{D_2(x)}$$

Both fulfill the probability preservation property for an event *E*:

$$D_1(E) - \Delta(D_1, D_2) \leq D_2(E)$$
 (additive)
 $D_1(E)^2 / \frac{R_2}{D_1} (D_1, D_2) \leq D_2(E)$ (multiplicative)

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow$ S (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

 $\begin{array}{lll} \varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) & \Rightarrow & \Delta(D_1, D_2) & \text{negligible} \\ \varepsilon_2 \geq \varepsilon_1^2 \ / \ R_2(D_1, D_2) & \Rightarrow & R_2(D_1, D_2) & \text{constant} \end{array}$

▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e** ← D₁, find **s**. ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** ← D₂, find **s**.

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow$ S (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

 $\begin{array}{lll} \varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) & \Rightarrow & \Delta(D_1, D_2) & \text{negligible} \\ \varepsilon_2 \geq \varepsilon_1^2 \ / \ R_2(D_1, D_2) & \Rightarrow & R_2(D_1, D_2) & \text{constant} \end{array}$

▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e** ← D₁, find **s**. ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** ← D₂, find **s**.

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow$ S (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

 $\begin{array}{lll} \varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) & \Rightarrow & \Delta(D_1, D_2) & \text{negligible} \\ \varepsilon_2 \geq \varepsilon_1^2 \ / \ R_2(D_1, D_2) & \Rightarrow & R_2(D_1, D_2) & \text{constant} \end{array}$

▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e** ← D₁, find **s**. ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** ← D₂, find **s**.

▶ Reduction from LWE_{D₂} to LWE_{D₁}, we want ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow$ S (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

 $\begin{array}{lll} \varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) & \Rightarrow & \Delta(D_1, D_2) & \text{negligible} \\ \varepsilon_2 \geq \varepsilon_1^2 \ / \ R_2(D_1, D_2) & \Rightarrow & R_2(D_1, D_2) & \text{constant} \end{array}$

- ▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₂, find **s**.
- ▶ Reduction from LWE_{D₂} to LWE_{D₁}, we want ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.
- By the probability preservation property of RD, we have $\varepsilon_2 \ge \varepsilon_1^2 / R_2(D_1, D_2)$.

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow$ S (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

 $\begin{array}{lll} \varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) & \Rightarrow & \Delta(D_1, D_2) & \text{negligible} \\ \varepsilon_2 \geq \varepsilon_1^2 \ / \ R_2(D_1, D_2) & \Rightarrow & R_2(D_1, D_2) & \text{constant} \end{array}$

▶ LWE_{D₁}: Given (**A**, **b** = **A s** + **e**) with **e**
$$\leftarrow$$
 D₁, find **s**.

- ▶ LWE_{D₂}: Given (**A**, **b** = **A s** + **e**) with **e** \leftarrow D₂, find **s**.
- ▶ Reduction from LWE_{D₂} to LWE_{D₁}, we want ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.
- By the probability preservation property of RD, we have $\varepsilon_2 \ge \varepsilon_1^2 / R_2(D_1, D_2)$.
- $R_2(D_1, D_2)$ constant then gives a reduction.

Example on a Gaussian distribution ¹

Example: two Gaussians D_{β} and $D_{\beta,s}$, $RD(D_{\beta}, D_{\beta,s}) = \exp\left(\frac{2\pi ||s||^2}{\beta^2}\right)$ $SD(D_{\beta}, D_{\beta,s}) = \frac{\sqrt{2\pi} ||s||}{\beta}$

Let $\|\mathbf{s}\| \leq \alpha$:

$$SD(D_{\beta}, D_{\beta,s}) = \frac{\sqrt{2\pi} \|s\|}{\beta} \Rightarrow \alpha/\beta \le \text{negligible}$$

$$RD(D_{\beta}, D_{\beta,s}) = \exp\left(\frac{2\pi \|s\|^2}{\beta^2}\right) \approx 1 + \frac{2\pi \|s\|^2}{\beta^2} \Rightarrow \alpha/\beta \le \text{constant}$$

(Taylor expansion at 0)

¹Thanks to Katharina Boudgoust for the slide.

Hardness of LWE with small uniform noise

- Quite direct by adding samples, then decision-to-search reduction.
- Using that the Rényi divergence $R_2(U_\beta || \psi)$ can be bounded by $1 + 1.05 \cdot \frac{\alpha}{\beta}$.

Using Micciancio Mol 11 sample preserving search-to-decision reduction (needs prime q).

More general result

Using the Rényi divergence, we have a reduction:

- Either $R_2(\psi||D_\alpha)$ is small,
- Either $R_2(\psi || \psi + D_\alpha)$ is small.

- Works nicely if the two distributions are close enough,
- Only needs to compute R_2 ,
- Distributions may be too far from each other (example: binary).

More generally

Often a security gap between:

- Cryptographic security assumptions/problems: use ideal probability distributions,
- Cryptographic schemes/implementations: use imperfect probability distributions.

The problem is to choose the 'imperfect' distribution parameters to account the security gap \rightarrow can have a significant impact!

The Rényi Divergence often gives a better approach to analyse this security gap and allow relaxed 'imperfect' parameters \rightarrow efficiency gain!

Limitation: It only works on search problems, where we often need decisional problems in cryptography.