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Cryptography Y GREYC

Let’s start with a simple example: you want to send a message to someone.

Two possibilities: To send WO Keys pk sk
» Either you share a secret key amessage 9 < keep sk
(AES...), ¢ = Encrypt(pk, M) . — M = Decrypt(sk, C)
» Either you don'’t
= public key cryptography (RSA...). /\

Solve a difficult algorithmic problem < Adversary
Example: factorisation

» Solving those problems needs an exponential complexity on a classical computer.
» Shor’s algorithm (1995): polynomial time on a quantum computer.
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Post quantum cryptography

— Need for alternatives
» Post-quantum secure, efficient,
» New functionalities, different types of constructions.
— Lattice-based cryptography: security relies on hard problems on lattices.

Lattice-based
3 over 4 standards

NIST competition
signature and encryption

69 submissions Code-based
2017-2024 Multivariate, Isogenies,
Hash based ..
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Post quantum cryptography Y GREYC

— Need for alternatives
» Post-quantum secure, efficient,
» New functionalities, different types of constructions.
— Lattice-based cryptography: security relies on hard problems on lattices.

Strong security guarantees
Lattice-based —

o 3 over 4 standards
NIST competition \ Rich and flexible
signature and encryption

69 submissions Code-based Efficiency
2017-2024 \ Multivariate, Isogenies,
Hash based ..
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Shortest Vector Problem Y GREYC

» Lattice

L(B) = {>_1_; aibs,a; € Z},
(bi)lgign basis of ﬁ(B)
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Shortest Vector Problem Y GREYC

» Lattice

L(B) ={>7_, abi,a; € Z},
(bi)lgign basis of ﬁ(B)

» )\; norm of the shortest vector,

> Approx SVP.: Given £(B),
find a non zero x € £(B) such
that [1x]] < 4\ (£(B)).
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Shortest Vector Problem Y GREYC

» Lattice

L(B) ={>7_, abi,a; € Z},
(bi)lgign basis of ﬁ(B)

» )\; norm of the shortest vector,

> Approx SVP.: Given £(B),
find a non zero x € £(B) such
that [1x]] < 4\ (£(B)).

Best known

algorithm 28 20(n) poly(n)
N 1 ﬁ p0|y(ll,) 2()(11)
/ i + + i )
NP-hard 1\ Crypto

NP n CoNP
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At the heart of lattice-based cryptography
the Learning With Errors problem

» Introduced by Regev in 2005

Problem: solve a linear system with noise.

Find (Sl, S92, 83, 54, .5‘_3) such that:

5142250 + 1753 + 254 + 55
3s1 + 2824 11s3 4+ 7s4 + 8ss
1551 4+ 1352 4+ 1053 4+ 354 + Hs5
1751 + 1155 + 2053 + 954 + 355
251 4+ 1459 4+ 13s3 4+ 654 + 755
451 4+ 2152 + 9s3 4+ Hss +  s5
11s1 + 1255 4+ 5ss + s4 4+ 9s5 ~

%

%

Q

Q

Q

Q

~» With an arbitrary number of equations.
]

16
17

18

mod 23
mod 23
mod 23
mod 23
mod 23
mod 23
mod 23

Y GREYC
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The Learning With Errors problem Y GREYC
LWE!

GivenmA,AH+ mH

n

» AU (Zflnx”),
> s < U(Z;‘), -
> ¢ small compared to g. Discrete Gaussian error Dz, oq

Search version: Given (A,b = As +e), find s.
Decision version: Distinguish from (A, b) with b uniform.
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Using LWE to build provable constructions - theory ""\GREYC

Lattice
Worst-case to average-
case reduction

— solve Approx SVP

Learning
With Errors

Security proof

Cryptographic
constructions




Cryptography and security proof gy GREYC

Use of reductions in security proof:
» To study the hardness of a problem (for example LWE),
» To show the security of a cryptographic scheme.

When involving distributions, the standard approach is to use the statistical
distance (SD) as measure of closeness:

A(Dl,DQ) = % Z ’Dl(m) - DQ(xN )

x€Supp(D1)
and to apply the probability preservation property of SD:
» For any event E, Prp,[E] > Prp, [E] — A(D1, D2),



Example on LWE Y GREYC

Consider two LWE problems:
» LWE),,:Given(A, b = A s + e)withie «+ D, find s.
» LWE),:Given (A, b = A s + e) with e «+ ), find s.

» Event S = success of an attack against LWE, Prp[S] is its probability under D.
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Consider two LWE problems:
» LWE),,:Given(A, b = A s + e)withie «+ D, find s.
» LWE),:Given (A, b = A s + e) with e «+ ), find s.

» Event S = success of an attack against LWE, Prp[S] is its probability under D.
» If LWE) is an hard problem, then ¢ = Prp[S] is negligible.

» Reduction from LWE,, to LWE),, we want:
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» By the probability preservation property of SD, we have =, > =1 — A(Dq, D).
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Using the Rényi divergence Y GREYC

In some cases, the probability preservation property may not be tight.

Let D1, D5 be two discrete probability distributions.

1
Statistical distance A(D1, Ds) = 5 > Di(@) - D),
zeSupp(D1)
Rényi divergence N _ D (x)?
Ro(Dy,Da) = Y Do(a]”
z€Supp(D1)

Both fulfill the probability preservation property for an event E:

Di(E)-A(Dy,Ds) < Do(E) (additive)
Di(E)?/12(Dy,Dy) < Do(E) (multiplicative)
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Using the Rényi divergence in reductions Y GREYC

Attack S (with D;) with success =1 = S (with 1),) with success =,
we want =, = =, negligible:

g9 > —A(D1,D2) = A(Di,D2) negligible
ey > 7/ Ro(D1,Ds) = Ro(D1,D3) constant

oM

n

C

» LWE),: Given (A, b = A s + e)withie «+ D, find s.
» LWE),: Given (A, b = A s + e)with e «+ 1), find s.
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Attack S (with D) with success =1 = S (with 1),) with success =,
we want =, = =, negligible:

co>e1—A(D1,Dy) = A(D1,D2) negligible
ey > 7/ Ro(D1,Ds) = Ro(D1,D3) constant

M M

» LWE) :Given (A, b = A s + e)with e «+ D, find s.
» LWE),: Given (A, b = A s + e)with e «+ 1), find s.
» Reduction from LWE,, to LWE ), , we want =, negligible = ¢, negligible

» By the probability preservation property of RD, we have =, > =7 / Ry(Dy, D3).
Rs(D1, Dy) constant then gives a reduction.

v
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Example on a Gaussian distribution ' Y GREYC
Example: two Gaussians [D; and D .,

RD(D ) =exp (2”})', Hz)

SD(Ds, Ds.s) = Y23lil

Let |s| < a:

N

SD(Dg,Dss) = B”s” = a/f < negligible
RD(Dj,Dss) =exp (ﬁgﬁ) 1+ =5 2'””5“ = a/f < constant

(Taylor expansion at O)

"Thanks to Katharina Boudgoust for the slide.



Hardness of LWE with small uniform noise Y GREYC

» Quite direct by adding samples,
then decision-to-search reduction.

[Decision LWE noise Da]

= Da+Up » Using that the Rényi divergence
R2(Ug||v) can be bounded by
14+1.05- 2.

Search LWE noise

Decision LWE noise Ug » Using Micciancio Mol 11 sample
preserving search-to-decision

reduction (needs prime g).

[ )
[ Search LWE noise U ]
[ )
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More general result Y GREYC

Using the Rényi divergence, we have a reduction:

[ Search LWE noise D, J

» Either R2(¢||Da) is small,
» Either Ra2(v||1p + Do) is small.

[ Search LWE noise ¢ j

» Works nicely if the two distributions are close enough,
» Only needs to compute R,
> Distributions may be too far from each other (example: binary).
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hd Al J
More generally % GREYC

Often a security gap between:

» Cryptographic security assumptions/problems: use ideal probability
distributions,

» Cryptographic schemes/implementations: use imperfect probability
distributions.

The problem is to choose the ‘imperfect’ distribution parameters to account the
security gap — can have a significant impact!

The Rényi Divergence often gives a better approach to analyse this security gap
and allow relaxed ‘imperfect’ parameters — efficiency gain!

Limitation: It only works on search problems, where we often need decisional
problems in cryptography.
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