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Cryptography
Let’s start with a simple example: you want to send a message to someone.

Two possibilities:
I Either you share a secret key

(AES...),
I Either you don’t
⇒ public key cryptography (RSA...).

To send
a message M

C = Encrypt(pk,M)
C

two keys pk, sk
pk

keep sk

M = Decrypt(sk, C)

AdversarySolve a difficult algorithmic problem⇔
Example: factorisation

I Solving those problems needs an exponential complexity on a classical computer.
I Shor’s algorithm (1995): polynomial time on a quantum computer.
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Post quantum cryptography

→ Need for alternatives
I Post-quantum secure, efficient,
I New functionalities, different types of constructions.
→ Lattice-based cryptography: security relies on hard problems on lattices.

NIST competition
signature and encryption

69 submissions

2017-2024

Code-based

Lattice-based
3 over 4 standards

Strong security guarantees

Rich and flexible

Efficiency

Multivariate, Isogenies,
Hash based ..
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Shortest Vector Problem
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I Lattice
L(B) = {

∑n
1=i aibi, ai ∈ Z},

(bi)1≤i≤n basis of L(B).

I λ1 norm of the shortest vector,

I Approx SVPγ: Given L(B),
find a non zero x ∈ L(B) such
that ‖x‖ ≤ γλ1(L(B)).

γ
1

√
n poly(n) 2O(n)

Best known
algorithm 2Ω(n) 2Ω(n) poly(n)

NP-hard

NP ∩ CoNP

Crypto
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At the heart of lattice-based cryptography
the Learning With Errors problem

I Introduced by Regev in 2005

Problem: solve a linear system with noise.

Find (s1, s2, s3, s4, s5) such that:

s1 + 22s2 + 17s3 + 2s4 + s5 ≈ 16 mod 23

3s1 + 2s2 + 11s3 + 7s4 + 8s5 ≈ 17 mod 23

15s1 + 13s2 + 10s3 + 3s4 + 5s5 ≈ 3 mod 23

17s1 + 11s2 + 20s3 + 9s4 + 3s5 ≈ 8 mod 23

2s1 + 14s2 + 13s3 + 6s4 + 7s5 ≈ 9 mod 23

4s1 + 21s2 + 9s3 + 5s4 + s5 ≈ 18 mod 23

11s1 + 12s2 + 5s3 + s4 + 9s5 ≈ 7 mod 23

 With an arbitrary number of equations.
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The Learning With Errors problem

LWEn
q

,
find s

Given A A
s

+ e

m

n

I A← U(Zm×nq ),
I s← U(Znq ),
I e small compared to q.

αq

Discrete Gaussian error DZ,αq

Search version: Given (A,b = As + e), find s.
Decision version: Distinguish from (A,b) with b uniform.
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Using LWE to build provable constructions - theory

Learning
With Errors

Lattice

→ solve Approx SVP
•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof
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Cryptography and security proof

Use of reductions in security proof:
I To study the hardness of a problem (for example LWE),
I To show the security of a cryptographic scheme.

When involving distributions, the standard approach is to use the statistical
distance (SD) as measure of closeness:

∆(D1, D2) =
1

2

∑
x∈Supp(D1)

|D1(x)−D2(x)| ,

and to apply the probability preservation property of SD:
I For any event E, PrD2 [E] ≥ PrD1 [E]−∆(D1, D2),
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Example on LWE

Consider two LWE problems:
I LWED1 : Given ( A , b = A s + e ) with e ← D1, find s .
I LWED2 : Given ( A , b = A s + e ) with e ← D2, find s .

I Event S = success of an attack against LWE, PrD[S] is its probability under D.

I If LWED is an hard problem, then ε = PrD[S] is negligible.

I Reduction from LWED2 to LWED1 , we want:
(LWED2 is hard⇒ LWED1 is hard) which means ε2 negligible⇒ ε1 negligible.

I By the probability preservation property of SD, we have ε2 ≥ ε1 −∆(D1, D2).
I ∆(D1, D2) negligible then gives a reduction.

9 / 15



Example on LWE

Consider two LWE problems:
I LWED1 : Given ( A , b = A s + e ) with e ← D1, find s .
I LWED2 : Given ( A , b = A s + e ) with e ← D2, find s .

I Event S = success of an attack against LWE, PrD[S] is its probability under D.
I If LWED is an hard problem, then ε = PrD[S] is negligible.

I Reduction from LWED2 to LWED1 , we want:
(LWED2 is hard⇒ LWED1 is hard) which means ε2 negligible⇒ ε1 negligible.

I By the probability preservation property of SD, we have ε2 ≥ ε1 −∆(D1, D2).
I ∆(D1, D2) negligible then gives a reduction.

9 / 15



Example on LWE

Consider two LWE problems:
I LWED1 : Given ( A , b = A s + e ) with e ← D1, find s .
I LWED2 : Given ( A , b = A s + e ) with e ← D2, find s .

I Event S = success of an attack against LWE, PrD[S] is its probability under D.
I If LWED is an hard problem, then ε = PrD[S] is negligible.

I Reduction from LWED2 to LWED1 , we want:
(LWED2 is hard⇒ LWED1 is hard) which means ε2 negligible⇒ ε1 negligible.

I By the probability preservation property of SD, we have ε2 ≥ ε1 −∆(D1, D2).
I ∆(D1, D2) negligible then gives a reduction.

9 / 15



Example on LWE

Consider two LWE problems:
I LWED1 : Given ( A , b = A s + e ) with e ← D1, find s .
I LWED2 : Given ( A , b = A s + e ) with e ← D2, find s .

I Event S = success of an attack against LWE, PrD[S] is its probability under D.
I If LWED is an hard problem, then ε = PrD[S] is negligible.

I Reduction from LWED2 to LWED1 , we want:
(LWED2 is hard⇒ LWED1 is hard) which means ε2 negligible⇒ ε1 negligible.

I By the probability preservation property of SD, we have ε2 ≥ ε1 −∆(D1, D2).

I ∆(D1, D2) negligible then gives a reduction.

9 / 15



Example on LWE

Consider two LWE problems:
I LWED1 : Given ( A , b = A s + e ) with e ← D1, find s .
I LWED2 : Given ( A , b = A s + e ) with e ← D2, find s .

I Event S = success of an attack against LWE, PrD[S] is its probability under D.
I If LWED is an hard problem, then ε = PrD[S] is negligible.

I Reduction from LWED2 to LWED1 , we want:
(LWED2 is hard⇒ LWED1 is hard) which means ε2 negligible⇒ ε1 negligible.

I By the probability preservation property of SD, we have ε2 ≥ ε1 −∆(D1, D2).
I ∆(D1, D2) negligible then gives a reduction.

9 / 15



Using the Rényi divergence

In some cases, the probability preservation property may not be tight.

Let D1, D2 be two discrete probability distributions.

Statistical distance

Rényi divergence

∆(D1, D2) =
1

2

∑
x∈Supp(D1)

|D1(x)−D2(x)| ,

R2(D1, D2) =
∑

x∈Supp(D1)

D1(x)2

D2(x)
.

Both fulfill the probability preservation property for an event E:

D1(E) - ∆(D1, D2) ≤ D2(E) (additive)
D1(E)2/R2(D1, D2) ≤ D2(E) (multiplicative)

10 / 15



Using the Rényi divergence in reductions

Attack S (with D1) with success ε1 ⇒ S (with D2) with success ε2,
we want ε2 ⇒ ε1 negligible:

ε2 ≥ ε1 −∆(D1, D2) ⇒ ∆(D1, D2) negligible
ε2 ≥ ε2

1 / R2(D1, D2) ⇒ R2(D1, D2) constant

I LWED1 : Given ( A , b = A s + e ) with e ← D1, find s .
I LWED2 : Given ( A , b = A s + e ) with e ← D2, find s .

I Reduction from LWED2 to LWED1 , we want ε2 negligible⇒ ε1 negligible.
I By the probability preservation property of RD, we have ε2 ≥ ε2

1 / R2(D1, D2).
I R2(D1, D2) constant then gives a reduction.
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Example on a Gaussian distribution 1

Let ‖s‖ ≤ α:

1Thanks to Katharina Boudgoust for the slide.
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Hardness of LWE with small uniform noise

Decision LWE noise Dα

Search LWE noise ψ

Search LWE noise Uβ

Decision LWE noise Uβ

ψ = Dα + Uβ

I Quite direct by adding samples,
then decision-to-search reduction.

I Using that the Rényi divergence
R2(Uβ ||ψ) can be bounded by
1 + 1.05 · α

β
.

I Using Micciancio Mol 11 sample
preserving search-to-decision
reduction (needs prime q).
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More general result

Using the Rényi divergence, we have a reduction:

Search LWE noise Dα

Search LWE noise ψ

I Either R2(ψ||Dα) is small,
I Either R2(ψ||ψ +Dα) is small.

I Works nicely if the two distributions are close enough,
I Only needs to compute R2,
I Distributions may be too far from each other (example: binary).
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More generally

Often a security gap between:
I Cryptographic security assumptions/problems: use ideal probability

distributions,
I Cryptographic schemes/implementations: use imperfect probability

distributions.

The problem is to choose the ‘imperfect’ distribution parameters to account the
security gap→ can have a significant impact!

The Rényi Divergence often gives a better approach to analyse this security gap
and allow relaxed ‘imperfect’ parameters→ efficiency gain!

Limitation: It only works on search problems, where we often need decisional
problems in cryptography.
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