DIVERGENCE DE RENYI EN ´ CRYPTOGRAPHIE REPOSANT SUR LES RESEAUX EUCLIDIENS ´

Adeline Roux-Langlois

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

Cryptography

Let's start with a simple example: you want to send a message to someone.

Two possibilities:

- \blacktriangleright Either you share a secret key (AES...),
- \blacktriangleright Either you don't
	- \Rightarrow public key cryptography (RSA...).

Solve a difficult algorithmic problem \Leftrightarrow Adversary Example: factorisation

- I Solving those problems needs an exponential complexity on a classical computer.
- I Shor's algorithm (1995): **polynomial time on a quantum computer**.

Post quantum cryptography

\rightarrow Need for alternatives

- \blacktriangleright Post-quantum secure, efficient.
- New functionalities, different types of constructions.
- \rightarrow Lattice-based cryptography: security relies on hard problems on lattices.

Post quantum cryptography

\rightarrow Need for alternatives

- \blacktriangleright Post-quantum secure, efficient,
- New functionalities, different types of constructions.
- \rightarrow Lattice-based cryptography: security relies on hard problems on lattices.

E Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\},\$ $({\bf b}_i)_{1\leq i\leq n}$ basis of $\mathcal{L}({\bf B})$.

E Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\},\$ $({\bf b}_i)_{1\leq i\leq n}$ basis of $\mathcal{L}({\bf B})$.

- **E** Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\},\$ $(**b**_i)₁_{*i*_{*n*}}$ basis of $\mathcal{L}(\mathbf{B})$.
- \blacktriangleright λ_1 norm of the shortest vector,
- **Example 21 Approx SVP**_γ: Given $\mathcal{L}(\mathbf{B})$, find a non zero $x \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \leq \gamma \lambda_1(\mathcal{L}(\mathbf{B})).$

E Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\},\$ $(**b**_i)₁_{*i*_{*n*}}$ basis of $\mathcal{L}(\mathbf{B})$.

- \blacktriangleright λ_1 norm of the shortest vector,
- **Approx SVP**_γ: Given $\mathcal{L}(\mathbf{B})$, find a non zero $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \leq \gamma \lambda_1(\mathcal{L}(\mathbf{B})).$

At the heart of lattice-based cryptography the Learning With Errors problem

Introduced by Regev in 2005

Problem: solve a linear system with noise.

Find $(s_1, s_2, s_3, s_4, s_5)$ such that:

 \rightsquigarrow With an arbitrary number of equations.

The Learning With Errors problem

Search version: Given $(A, b = As + e)$, find **s**. Decision version: Distinguish from (**A**, **b**) with **b** uniform.

Using LWE to build provable constructions - theory

Cryptography and security proof

Use of reductions in security proof:

- \triangleright To study the hardness of a problem (for example LWE),
- \triangleright To show the security of a cryptographic scheme.

When involving distributions, **the standard approach** is to use the statistical distance (SD) as measure of closeness:

$$
\Delta(D_1, D_2) = \frac{1}{2} \sum_{x \in \text{Supp}(D_1)} |D_1(x) - D_2(x)|,
$$

and to apply the **probability preservation property** of SD:

For any event E , $Pr_{D_2}[E] \geq Pr_{D_1}[E] - \Delta(D_1, D_2)$,

- ▶ LWE_{D₁}: Given (**A** , **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find **s**.
- Event $S =$ success of an attack against LWE, $Pr_D[S]$ is its probability under D.

- ▶ LWE_{D₁}: Given (**A** , **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find **s**.
- Event S = success of an attack against LWE, $Pr_D[S]$ is its probability under D.
- If LWE_D is an hard problem, then $\varepsilon = \Pr_D[S]$ is negligible.

- ▶ LWE_{D₁}: Given (**A** , **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find **s**.
- Event $S =$ success of an attack against LWE, $Pr_D[S]$ is its probability under D.
- If LWE_D is an hard problem, then $\varepsilon = \Pr_D[S]$ is negligible.
- \blacktriangleright Reduction from LWE $_{D_2}$ to LWE $_{D_1}$, we want: (LWE $_{D_2}$ is hard \Rightarrow LWE $_{D_1}$ is hard) which means ε_2 negligible \Rightarrow ε_1 negligible.

- ▶ LWE_{D₁}: Given (**A** , **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find **s**.
- Event $S =$ success of an attack against LWE, $Pr_D[S]$ is its probability under D.
- If LWE_D is an hard problem, then $\varepsilon = \Pr_D[S]$ is negligible.
- \blacktriangleright Reduction from LWE $_{D_2}$ to LWE $_{D_1}$, we want: (LWE $_{D_2}$ is hard \Rightarrow LWE $_{D_1}$ is hard) which means ε_2 negligible \Rightarrow ε_1 negligible.
- ► By the probability preservation property of SD, we have $\varepsilon_2 > \varepsilon_1 \Delta(D_1, D_2)$.

- ▶ LWE_{D₁}: Given (**A** , **b** = **A s** + **e**) with **e** \leftarrow D₁, find **s**.
- ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find **s**.
- Event $S =$ success of an attack against LWE, $Pr_D[S]$ is its probability under D.
- If LWE_D is an hard problem, then $\varepsilon = \Pr_D[S]$ is negligible.
- \blacktriangleright Reduction from LWE $_{D_2}$ to LWE $_{D_1}$, we want: (LWE $_{D_2}$ is hard \Rightarrow LWE $_{D_1}$ is hard) which means ε_2 negligible \Rightarrow ε_1 negligible.
- ► By the probability preservation property of SD, we have $\varepsilon_2 \geq \varepsilon_1 \Delta(D_1, D_2)$.
- \triangleright $\Delta(D_1, D_2)$ negligible then gives a reduction.

Using the Rényi divergence

.

In some cases, the probability preservation property may not be tight.

Let D_1, D_2 be two discrete probability distributions.

Statistical distance $\Delta(D_1, D_2) = \frac{1}{2}$ \sum $x∈$ Supp (D_1) $|D_1(x) - D_2(x)|$,

$$
\text{Rényi divergence} \qquad \qquad R_2(D_1, D_2) = \sum_{x \in \text{Supp}(D_1)} \frac{D_1(x)^2}{D_2(x)}
$$

Both fulfill the probability preservation property for an event E :

$$
D_1(E) \cdot \Delta(D_1, D_2) \leq D_2(E) \qquad \text{(additive)}
$$

$$
D_1(E)^2 / R_2(D_1, D_2) \leq D_2(E) \qquad \text{(multiplicative)}
$$

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow S$ (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

> $\varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) \quad \Rightarrow \quad \Delta(D_1, D_2) \quad \text{ negligible}$ $\varepsilon_2 \geq \varepsilon_1^2$ / $R_2(D_1, D_2) \Rightarrow R_2(D_1, D_2)$ constant

▶ LWE_{D₁}: Given $(A, b = A s + e)$ with $e \leftarrow D_1$, find **s**. ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find s.

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow S$ (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

> $\varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) \quad \Rightarrow \quad \Delta(D_1, D_2) \quad \text{ negligible}$ $\varepsilon_2 \geq \varepsilon_1^2$ / $R_2(D_1, D_2) \Rightarrow R_2(D_1, D_2)$ constant

▶ LWE_{D₁}: Given $(A, b = A s + e)$ with $e \leftarrow D_1$, find **s**. ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find s.

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow S$ (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

> $\varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) \quad \Rightarrow \quad \Delta(D_1, D_2) \quad \text{ negligible}$ $\varepsilon_2 \geq \varepsilon_1^2$ / $R_2(D_1, D_2) \Rightarrow R_2(D_1, D_2)$ constant

▶ LWE_{D₁}: Given $(A, b = A s + e)$ with $e \leftarrow D_1$, find **s**. ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find s.

Figure Reduction from LWE_{D₂} to LWE_{D₁}, we want ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow S$ (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

> $\varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) \quad \Rightarrow \quad \Delta(D_1, D_2) \quad \text{ negligible}$ $\varepsilon_2 \geq \varepsilon_1^2$ / $R_2(D_1, D_2) \Rightarrow R_2(D_1, D_2)$ constant

- ▶ LWE_{D₁}: Given $(A, b = A s + e)$ with $e \leftarrow D_1$, find **s**. ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find s.
- Figure Reduction from LWE_{D₂} to LWE_{D₁}, we want ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.
- \blacktriangleright By the probability preservation property of RD, we have $\varepsilon_2 \geq \varepsilon_1^2$ / $R_2(D_1, D_2)$.

Attack S (with D_1) with success $\varepsilon_1 \Rightarrow S$ (with D_2) with success ε_2 , we want $\varepsilon_2 \Rightarrow \varepsilon_1$ negligible:

> $\varepsilon_2 \geq \varepsilon_1 - \Delta(D_1, D_2) \quad \Rightarrow \quad \Delta(D_1, D_2) \quad \text{ negligible}$ $\varepsilon_2 \geq \varepsilon_1^2$ / $R_2(D_1, D_2) \Rightarrow R_2(D_1, D_2)$ constant

- ▶ LWE_{D₁}: Given $(A, b = A s + e)$ with $e \leftarrow D_1$, find **s**. ▶ LWE_{D₂}: Given $(A, b = A s + e)$ with $e \leftarrow D_2$, find s.
- Figure Reduction from LWE_{D₂} to LWE_{D₁}, we want ε_2 negligible $\Rightarrow \varepsilon_1$ negligible.
- \blacktriangleright By the probability preservation property of RD, we have $\varepsilon_2 \geq \varepsilon_1^2$ / $R_2(D_1, D_2)$.
- \blacktriangleright $R_2(D_1, D_2)$ constant then gives a reduction.

Example on a Gaussian distribution ¹

Example: two Gaussians D_{β} and $D_{\beta,s}$, $RD(D_{\beta}, D_{\beta,s}) = \exp\left(\frac{2\pi ||s||^2}{\beta^2}\right)$ $SD(D_{\beta}, D_{\beta,s}) = \frac{\sqrt{2\pi} ||s||}{\beta}$

Let $\|\mathbf{s}\| < \alpha$:

$$
SD(D_{\beta}, D_{\beta,s}) = \frac{\sqrt{2\pi} \|s\|}{\beta} \Rightarrow \alpha/\beta \le \text{negligible}
$$

\n
$$
RD(D_{\beta}, D_{\beta,s}) = \exp\left(\frac{2\pi \|s\|^2}{\beta^2}\right) \approx 1 + \frac{2\pi \|s\|^2}{\beta^2} \Rightarrow \alpha/\beta \le \text{constant}
$$

\n(Taylor expansion at 0)

¹Thanks to Katharina Boudgoust for the slide.

Hardness of LWE with small uniform noise

- \blacktriangleright Quite direct by adding samples, then decision-to-search reduction.
- \triangleright Using that the Rényi divergence $R_2(U_\beta||\psi)$ can be bounded by $1+1.05\cdot\frac{\alpha}{\beta}.$

▶ Using Micciancio Mol 11 sample preserving search-to-decision reduction (needs prime q).

More general result

Using the Rényi divergence, we have a reduction:

- Either $R_2(\psi||D_\alpha)$ is small,
- Either $R_2(\psi||\psi + D_\alpha)$ is small.

- Works nicely if the two distributions are close enough,
- Only needs to compute R_2 ,
- \triangleright Distributions may be too far from each other (example: binary).

<u>voj stan</u>

More generally

Often a **security gap** between:

- ► Cryptographic security **assumptions/problems**: use ideal probability distributions,
- ▶ Cryptographic **schemes/implementations**: use imperfect probability distributions.

The problem is to choose the 'imperfect' distribution parameters to account the security gap \rightarrow can have a significant impact!

The Rényi Divergence often gives a better approach to analyse this security gap and allow relaxed 'imperfect' parameters \rightarrow efficiency gain!

Limitation: It only works on search problems, where we often need decisional problems in cryptography.