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Some notation:

> Sis the disc { (x,y) € R?|(x —u1)*> + (y — u2)? < 82}, in which
u = (uy,up) is the coordinate-vector of its center;

» nis the number of trajectories .7 that intersect the cell;

> J is the set of indices of these trajectories;

n=card/ where J={jeN|JNS#0}

> 0; is the angle of .7; with respect to some fixed direction, at entrance
point;

> we regard the 6;’s as realizations of a random variable 6, and we are
then interested in estimating the probability density p(6).



From the angular sampling 6;, we may build a set of empirical moments.
The Fourier coefficients of p are defined as

1 2w 1 2n
a = — p(0)cos(160)d6 and by = p p(0)sin(10)d6.
0 0

The empirical coefficients

—Zcos (16;) and y = —Zsm (16)
e N ey

are regarded as statistical estimators of a; and by, respectively.
Note in passing that the estimator xq gives the exact value 1/7 of ao.



27
Minimize H(p) ::/0 p(6)Inp(6)d6

st. pelLl([0,2n)),

2
1= [ po)as.
0



Relaxation:

Minimize

S.t.

(2)

21
H(p) := /0 p(6)Inp(6)do
pe Ll([O,ZTL')),

2
0
1 4
X =— p(0)cos(16)do, Le{1,...
T Jo
1 2
yi=— [ p(6)sin(16)d6, I €{1,...
0

(04
Minimize H(p)+ B} |z — A-PH)Z:_u

2T
St 1:/ p(6)d6,
JO

N},

N}
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» |- ||+ denotes the function given by

121 = /(2,27 12),

in which ¥ denotes the covariance matrix of random vector Z of
components X1, ..., Xy, Y1,..., Yy, with

1 1 I« 1
X;=-) —cos(l6;)) and Y;=-Y) —sin(l6);
n];] T J ’/lj;/ T /

» z=(x1,...,XN,)1,---,yN) is the data vector;

> A: L'([0,27)) — R?V is the linear mapping defined by

21
(Ap)m:/o p(8)cos(mB)dd it me{l,...,N},

(Ap)m = ! p(0)sin((m—N)0)d6 if me{N+1,...,2N}.



€

(01
Minimize H(p)+ ) |lz— Ap

[
2T
s.t. 1:/ p(6)de,
JO

» In Problem (&), the squared Mahalanobis distance between Ap and z
is penalized, as a model fitting requirement.
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Minimize H(/’)JFEHZ*A&/’H& 1

2T
s.t. 1:/ p(6)do,
Jo
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(01 2
Minimize H(p)+ ) |z — Ap||5-
(2)

2T
s.t. 1:/ p(6)do,
Jo

In Problem (.%7), the squared Mahalanobis distance between Ap and z
is penalized, as a model fitting requirement.

The covariance matrix X is not known in practice: it will be necessary
to estimate it.

But: using the Mahalanobis distance requires, in principle, to dispose
of a positive definite estimate of X.

The inverse of ¥ may not exist.
— degenerate version of the Mahalanobis distance:

o2 ) (@, X'2) if7 erany,
2|5+ = .
otherwise,

The infinite value of the corresponding penalization is, of course,
equivalent to a sharp constraint in problem (2?).
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» Constraint function:

Y(6) = (cosH,...,cos(N0),sinb,...,sin(NG)).

» The linear operator A is then written as:

ap= [ p(o)(0)d0.

» Problem (&?) pertains to partially finite convex programming.
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» L real vector space;

> fiL— [eo,00];

> epif :i={(x,a@) ELxR|f(x)<a};
> hypog:={(x,a0) ELxR| g(x) > ot }.

Definition

> fis said to be convex if its epigraph is a convex subset of L x R. It is
said to be proper convex if it never takes the value —o and it is not
identically equal to oo.

> A function g: L — [—eo, 0| is said to be concave if —g is convex, and
proper concave if —g is proper convex. Thus g is concave if and only if
its hypograph is convex.
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Definition

The effective domain of a convex function f is the set
domf = {x€L|f(x)<o}.
The effective domain of a concave function g is the set

domg={xeL| gx)>—c}.

In optimization, we use indicator functions to encode constraints. The
indicator function of a subset C C L is the function

0 ifxedC,
o otherwise.

Oc(x) == {
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Let now L and A be vector spaces paired by some bilinear mapping

(n): LxA — R
&) — (&)

An standard example is L = RY = A with the usual Euclidean scalar product.
Another example is obtained by taking L = L!(V) and A = L=(V) with V a
subset of R".

Definition

The convex conjugate of a function f (convex or not) is defined as the

function
f(E)=sup{(x&)—f(x) | xeX}, EecA

The concave conjugate of a function f (concave or not) is the function

(&) =inf{ (&) —f() | xeX}, Ee€A.
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A remarkable fact is that convex conjugacy acts as an involution on certain
classes of functions. For example, if f: RY — [—o0, 0] is a
lower-semicontinuous proper convex function, then

F= () =1

Definition

Given a convex subset C € RY, we call relative interior of C the interior of C
with respect to its affine hull aff C. Recall that aff C is the smallest affine
subspace that contains C. The relative interior of C is denoted by riC.

For example, if C is a closed segment in R?, its interior is empty while its
relative interior is the segment without its ends.

It can be shown that the relative interior of a nonempty convex set is
necessarily nonempty.



Theorem (Fenchel)

Letf and g be functions on R respectively proper convex and proper
concave such that
ridomf Nridomg # 0.
Then
n:= inf {f(x)—g(x)} = gsupd{g*(é) —f*(8)}
eR

xeR4

and the supremum is attained.



Theorem
Let be given:

» L and A, real vector spaces;

» (-,), a bilinear form on L x A;

» A: L — RY alinear mapping;

» F: L — (—oo,00|, a proper convex function;
> g: RY — [—o0,0), a proper concave function.

Assume that A admits a formal adjoint mapping A*, that is, a linear
mapping A*: RY — A such that (Ax,y) = (x, A*y) for every x € L and
every'y € RY. Then, under the qualification condition

(QC) ri(AdomF)Nri(domg) # 0,
one has

N := inf{F(x) —g(Ax)} = max {.(4) - F*(A"A)}.



The optimization problems
Minimize (F—goA) and Maximize (g, —F*oA”)

are respectively referred to as the primal and dual problems.



The optimization problems
Minimize (F—goA) and Maximize (g, —F o A”)
are respectively referred to as the primal and dual problems.

The function D := g, — F* o A* is referred to as the dual function.



Theorem (Primal attainment)

With the notation and assumptions of the previous theorem, assume in
addition that

(QC*) ridomg, Nridom(F* o A*) # 0.
Suppose further that
(a) F** =F and g, = g;

(b) there exists A dual optimal and X € dF*(A*A) such that F* o A* has
gradient Ax at A.

Then X is primal optimal.
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An integral functional is a functional of the form

j‘f(p)z/vh(p(x),x)d/.t(x), uel.

Here, V is assumed to be endowed with a c-algebra of measurable sets and
with a measure denoted by |L; the function h is called the integrand, and the
argument p is assumed to pertain to some space of measurable functions L.



Definition

An integral functional is a functional of the form

j‘f(p)z/vh(p(x),x)d/.t(x), uel.

Here, V is assumed to be endowed with a c-algebra of measurable sets and
with a measure denoted by |L; the function h is called the integrand, and the
argument p is assumed to pertain to some space of measurable functions L.

In our case:
> L=1L1,
> h(p(x),x) = ho(p(x)), with
tlnt ift>0,

ho(t)=4¢ 0 ifr=0,
o <0.
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We say that a space L of measurable functions is decomposable if it is stable
under bounded alteration on sets of finite measure. Otherwise expressed, L is
decomposable if and only if it contains all functions of the form

17 po+1rc-p,

in which T has finite measure, p, is a measurable function such that the set
Do(T) is bounded, and p is any member of L.



How to conjugate .77 ?

The answer lies in what is referred to as

conjugacy through the integral sign.

Definition

We say that a space L of measurable functions is decomposable if it is stable
under bounded alteration on sets of finite measure. Otherwise expressed, L is
decomposable if and only if it contains all functions of the form

17 po+1rc-p,

in which T has finite measure, p, is a measurable function such that the set
Do(T) is bounded, and p is any member of L.

One can easily see that the familiar L-spaces are decomposable, which
includes our workspace L' (V, 4, dx).



Theorem (Rockafellar)

Let L and A be spaces of measurable functions on Q paired by means of the
standard integral bilinear form

(.9)= [ r(0p(x)dx.
Let 7 be the functional of integrand 4., that is,
H )= [ help(x) dx,

with i, proper convex and lower semi-continuous. Assume that L is
decomposable and that .7# has nonempty effective domain. Then

#(9) = [ (o) x

for every ¢ € A, and J#* is convex on A.



Theorem (Primal-dual relationship)

With the notation and assumptions of the general Fenchel Theorem, assume
in addition that dom D has nonempty interior, that ¢ is an integral
functional of integrand h such that conjugacy through the integral sign is
permitted. Assume that, as requested in the primal attainment theorem,
A" = A and g,« = g. Assume finally that the conjugate integrand h* is
differentiable over R, and that there exists some dual-optimal vector A in
intdomD. If B

p(x) :==n*' ([A*A](x),x) € L,

then p is a primal solution.
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(2)

(04
Minimize H(p)+ 2~ Ap]3

2T
st 1= / p(6)de,
0
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(2)

Minimize H(p)+%||Z*AP||§71
27
it 1:/ p(6)de,
Jo

/02”p<e>de, peLl((0,27)),

Ip:=

«O>» «F» « >

<
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(2)

Minimize H(p)+ % |lz— Ap
27
s.t. 1:/ p(6)do,
Jo

27

Ip= [ ple)ds, peL'(o.2m),
0

Problem (%7) can be written as

Minimize H(p) — go(Aop)
where
and

Aop = (Ip;Ap) € RxR? =RV

o
8o(Mo,M) —EHZ— n H%—l — 813 (16)-

2
HZ 1



The adjoint mapping A%: R!*2N — 1=([0,27)) is given by

AZ(20,4)(0) = Ao+ (4,7(6)).
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The adjoint mapping A%: R!*2N — 1=([0,27)) is given by

AZ(20,4)(0) = Ao+ (4,7(6)).

Moreover,

1
(g0)(Aos ) = Ao + (2,4) — || 4|13
o
Accounting for conjugacy through the integral sign, the dual problem reads:

2
(@) Wt xo+<x,z>—i|m\§—exp(%—1)/ " exp(A, ¥(0))d6.
JO



The dual function is concave, finite and differentiable on R!t2V,



The dual function is concave, finite and differentiable on R!t2V,
Optimality system:

_ 21
0 — 1—exp(7to—1)/ exp(4,¥(6))d6,
0
1 - _ 2r _
0 — z_am—exp(xo—l)/o 7(8)exp(4,7(6)) d6,



The dual function is concave, finite and differentiable on R!t2V,
Optimality system:

_ 21
0 — 1—exp(7to—1)/ exp(4,¥(6))d6,
0
_ _ 2n _
0 — z_lm—exp(xo—l)/ ¥(0)exp(A,¥(6))do,
(04 0

The system reduces to

0:z—lZl—
o

[ v0)exp(L.7(0)) a0
2ﬂexp(i7y(9)>d9

The above system is also the optimality system of the problem

~ 21
(9) Maximize <l,z>7i||).||>2:fln/ exp(A, ¥(6)) d6
0



Proposition

The function

5 1 21
D(A) = (A7)~ 5 |AJR—1n [ exp(d,¥(6))do
0
to be maximized in Problem () is concave, smooth and everywhere finite.
Its gradient is given by

O [T re)ew r6)6
_ [0] .

2T

exp(4,7(6))dé




The function %(7) = exp(7 — 1) obviously meets the requirements of the
primal-dual relationship theorem.



The function %(7) = exp(7 — 1) obviously meets the requirements of the
primal-dual relationship theorem. Provided we can obtain a dual

solution (Ao, A ), the optimal density is then given by

p(8) =exp[do — 1 +(A,¥())] = -2:XP<LY(9)>

/ exp(A,7(8))d6

0




Algorithm 1 Computing maximum entropy densities

1:

Input: the range N, that is, the number of empirical (complex)
Fourier coefficients to be taken into account, and the data vector
ze RN

Output: The maximum entropy probability angular distributions
in the cell under consideration

Maximize the dual functions

- 1 2w
D(A)i=(A,2)— AR ~1n [ exp(d,¥(6))do
(04 0
From the dual optimal solutions A obtained in the previous step,
form the optimal densities

exp(4,¥(6))

ﬁ(e) = T orn ~
| expid.y(e))a0
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In the maximum entropy problem, the attach term
« 2
2= Al
depends of the choice of the highest frequency N to be accounted for, on the

estimation of the covariance matrix ¥ and on the choice of the regularization
parameter ¢.



We observe that the Kullback-Leibler entropy of the true density p, relative
to the reconstructed density p decreases as N increases, and stabilizes
beyond some value of N.

KL Integral vs N

Here, we see that there is no gain beyond N = 50.



We use the Morozov discrepancy principle:

the regularization parameter o should be such that the corre-
sponding solution p should give a residual ||z — Ap|| equal to a
number strictly greater than, but close to, the estimated size p of
the error on the data.



Algorithm 2 Determining ¢ using the Morozov discrepancy principle

1:

— = =
» 5 8

13:

14:
15:
16:

P RPN

Input: p, condition (e.g. 1.095p < residual < 1.105p), u (e.g. u
=1.2), maximum number of iterations Npax
Output: Morozov value of o
Seti =0, Otpin =0, Opax ==, 0 =1
while condition is not satisfied and i < Ny,x do
Compute the maximum entropy solution py,
Compute the residual ||z — Apg,||
if residual < 1.095p then
Set Omax = O
Set oy = W
end if
if residual > 1.105p then
Set Otmin = &

Set ;11 = {

end if
Seti=i+1
end while

amin‘iz’amax lf amax <
uao; otherwise



Choose the appropriate value for o:

Residual values when o values from 1 to 10000.
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We start by performing simulations. We shall:
(a) Generate an angular sample following a probability po;
(b) Compute the corresponding empirical Fourier coefficients;

(c) Compute the maximum entropy density that is compatible, in the
relaxed setting described above, with our empirical Fourier coefficients.



Given a specific simulation example based on the original probability p,(0)
with 2 peaks and 3 = 0.1.

— p-(6)
Simulated 8

>
=
i
c
©
[=]
2
=
©
a
°
o
o

Theta




For reconstruction between original and optimal densities with two peaks.
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