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Some notation:

▶ S is the disc {(x,y) ∈R2 |(x−u1)
2 +(y−u2)

2 ≤ δ 2}, in which
u = (u1,u2) is the coordinate-vector of its center;

▶ n is the number of trajectories Tj that intersect the cell;

▶ J is the set of indices of these trajectories;

n = cardJ where J = {j ∈N|Tj ∩S ̸= /0}

▶ θj is the angle of Tj with respect to some fixed direction, at entrance
point;

▶ we regard the θj’s as realizations of a random variable θ , and we are
then interested in estimating the probability density p(θ).
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From the angular sampling θj, we may build a set of empirical moments.
The Fourier coefficients of p are defined as

al =
1
π

∫ 2π

0
p(θ)cos(lθ)dθ and bl =

1
π

∫ 2π

0
p(θ)sin(lθ)dθ .

The empirical coefficients

xl =
1

πn ∑
j∈J

cos(lθj) and yl =
1

πn ∑
j∈J

sin(lθj)

are regarded as statistical estimators of al and bl, respectively.
Note in passing that the estimator x0 gives the exact value 1/π of a0.



(P◦)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Minimize H(p) :=
∫ 2π

0
p(θ) lnp(θ)dθ

s.t. p ∈ L1([0,2π)),

1 =
∫ 2π

0
p(θ)dθ ,

xl =
1
π

∫ 2π

0
p(θ)cos(lθ)dθ , l ∈ {1, . . . ,N},

yl =
1
π

∫ 2π

0
p(θ)sin(lθ)dθ , l ∈ {1, . . . ,N}.

Relaxation:

(P)

∣∣∣∣∣∣∣
Minimize H(p)+

α

2
∥z−Ap∥2

Σ−1

s.t. 1 =
∫ 2π

0
p(θ)dθ ,
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▶ ∥ · ∥
Σ−1 denotes the function given by

∥z′∥
Σ−1 =

√
⟨z′,Σ−1z′⟩,

in which Σ denotes the covariance matrix of random vector Z of
components X1, . . . ,XN ,Y1, . . . ,YN , with

Xl =
1
n ∑

j∈J

1
π

cos(lθj) and Yl =
1
n ∑

j∈J

1
π

sin(lθj);

▶ z = (x1, . . . ,xN ,y1, . . . ,yN) is the data vector;

▶ A : L1([0,2π))→R2N is the linear mapping defined by

(Ap)m =
∫ 2π

0
p(θ)cos(mθ)dθ if m ∈ {1, . . . ,N},

(Ap)m =
∫ 2π

0
p(θ)sin((m−N)θ)dθ if m ∈ {N +1, . . . ,2N}.
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▶ In Problem (P), the squared Mahalanobis distance betweenAp and z
is penalized, as a model fitting requirement.

▶ The covariance matrix Σ is not known in practice: it will be necessary
to estimate it.

▶ But: using the Mahalanobis distance requires, in principle, to dispose
of a positive definite estimate of Σ.

▶ The inverse of Σ may not exist.
↪→ degenerate version of the Mahalanobis distance:

∥z′∥2
Σ† =

{
⟨z′,Σ†z′⟩ if z′ ∈ ranΣ,

∞ otherwise,

▶ The infinite value of the corresponding penalization is, of course,
equivalent to a sharp constraint in problem (P).



(P)

∣∣∣∣∣∣∣
Minimize H(p)+

α

2
∥z−Ap∥2

Σ−1

s.t. 1 =
∫ 2π

0
p(θ)dθ ,

▶ In Problem (P), the squared Mahalanobis distance betweenAp and z
is penalized, as a model fitting requirement.

▶ The covariance matrix Σ is not known in practice: it will be necessary
to estimate it.

▶ But: using the Mahalanobis distance requires, in principle, to dispose
of a positive definite estimate of Σ.

▶ The inverse of Σ may not exist.
↪→ degenerate version of the Mahalanobis distance:

∥z′∥2
Σ† =

{
⟨z′,Σ†z′⟩ if z′ ∈ ranΣ,

∞ otherwise,

▶ The infinite value of the corresponding penalization is, of course,
equivalent to a sharp constraint in problem (P).



(P)

∣∣∣∣∣∣∣
Minimize H(p)+

α

2
∥z−Ap∥2

Σ−1

s.t. 1 =
∫ 2π

0
p(θ)dθ ,

▶ In Problem (P), the squared Mahalanobis distance betweenAp and z
is penalized, as a model fitting requirement.

▶ The covariance matrix Σ is not known in practice: it will be necessary
to estimate it.

▶ But: using the Mahalanobis distance requires, in principle, to dispose
of a positive definite estimate of Σ.

▶ The inverse of Σ may not exist.
↪→ degenerate version of the Mahalanobis distance:

∥z′∥2
Σ† =

{
⟨z′,Σ†z′⟩ if z′ ∈ ranΣ,

∞ otherwise,

▶ The infinite value of the corresponding penalization is, of course,
equivalent to a sharp constraint in problem (P).



(P)

∣∣∣∣∣∣∣
Minimize H(p)+

α

2
∥z−Ap∥2

Σ−1

s.t. 1 =
∫ 2π

0
p(θ)dθ ,

▶ In Problem (P), the squared Mahalanobis distance betweenAp and z
is penalized, as a model fitting requirement.

▶ The covariance matrix Σ is not known in practice: it will be necessary
to estimate it.

▶ But: using the Mahalanobis distance requires, in principle, to dispose
of a positive definite estimate of Σ.

▶ The inverse of Σ may not exist.
↪→ degenerate version of the Mahalanobis distance:

∥z′∥2
Σ† =

{
⟨z′,Σ†z′⟩ if z′ ∈ ranΣ,

∞ otherwise,

▶ The infinite value of the corresponding penalization is, of course,
equivalent to a sharp constraint in problem (P).



(P)

∣∣∣∣∣∣∣
Minimize H(p)+

α

2
∥z−Ap∥2

Σ−1

s.t. 1 =
∫ 2π

0
p(θ)dθ ,

▶ In Problem (P), the squared Mahalanobis distance betweenAp and z
is penalized, as a model fitting requirement.

▶ The covariance matrix Σ is not known in practice: it will be necessary
to estimate it.

▶ But: using the Mahalanobis distance requires, in principle, to dispose
of a positive definite estimate of Σ.

▶ The inverse of Σ may not exist.
↪→ degenerate version of the Mahalanobis distance:

∥z′∥2
Σ† =

{
⟨z′,Σ†z′⟩ if z′ ∈ ranΣ,

∞ otherwise,

▶ The infinite value of the corresponding penalization is, of course,
equivalent to a sharp constraint in problem (P).



▶ Constraint function:

γγγ(θ) = (cosθ , . . . ,cos(Nθ),sinθ , . . . ,sin(Nθ)).

▶ The linear operatorA is then written as:

Ap =
∫ 2π

0
p(θ)γγγ(θ)dθ .

▶ Problem (P) pertains to partially finite convex programming.
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▶ L real vector space;

▶ f : L → [−∞,∞];

▶ epi f :=
{
(x,α) ∈ L×R

∣∣ f (x)≤ α
}

;

▶ hypog :=
{
(x,α) ∈ L×R

∣∣ g(x)≥ α
}

.

Definition

▶ f is said to be convex if its epigraph is a convex subset of L×R. It is
said to be proper convex if it never takes the value −∞ and it is not
identically equal to ∞.

▶ A function g : L → [−∞,∞] is said to be concave if −g is convex, and
proper concave if −g is proper convex. Thus g is concave if and only if
its hypograph is convex.
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Definition
The effective domain of a convex function f is the set

dom f =
{

x ∈ L
∣∣ f (x)< ∞

}
.

The effective domain of a concave function g is the set

domg =
{

x ∈ L
∣∣ g(x)>−∞

}
.

In optimization, we use indicator functions to encode constraints. The
indicator function of a subset C ⊂ L is the function

δC(x) :=
{

0 if x ∈ C,
∞ otherwise.



Definition
The effective domain of a convex function f is the set

dom f =
{

x ∈ L
∣∣ f (x)< ∞

}
.

The effective domain of a concave function g is the set

domg =
{

x ∈ L
∣∣ g(x)>−∞

}
.

In optimization, we use indicator functions to encode constraints. The
indicator function of a subset C ⊂ L is the function

δC(x) :=
{

0 if x ∈ C,
∞ otherwise.



Let now L and Λ be vector spaces paired by some bilinear mapping

⟨·, ·⟩ : L×Λ −→ R

(x,ξ ) 7−→ ⟨x,ξ ⟩.

An standard example is L =Rd = Λ with the usual Euclidean scalar product.
Another example is obtained by taking L = L1(V) and Λ = L∞(V) with V a
subset of Rn.

Definition
The convex conjugate of a function f (convex or not) is defined as the
function

f ⋆(ξ ) = sup
{
⟨x,ξ ⟩− f (x)

∣∣ x ∈ X
}
, ξ ∈ Λ.

The concave conjugate of a function f (concave or not) is the function

f⋆(ξ ) = inf
{
⟨x,ξ ⟩− f (x)

∣∣ x ∈ X
}
, ξ ∈ Λ.
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A remarkable fact is that convex conjugacy acts as an involution on certain
classes of functions. For example, if f : Rd → [−∞,∞] is a
lower-semicontinuous proper convex function, then

f ⋆⋆ := (f ⋆)⋆ = f .

Definition
Given a convex subset C ∈Rd, we call relative interior of C the interior of C
with respect to its affine hull affC. Recall that affC is the smallest affine
subspace that contains C. The relative interior of C is denoted by riC.

For example, if C is a closed segment in R2, its interior is empty while its
relative interior is the segment without its ends.

It can be shown that the relative interior of a nonempty convex set is
necessarily nonempty.
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Theorem (Fenchel)

Let f and g be functions on Rd respectively proper convex and proper
concave such that

ridom f ∩ ridomg ̸= /0.

Then
η := inf

x∈Rd

{
f (x)−g(x)

}
= sup

ξξξ∈Rd

{
g⋆(ξξξ )− f ⋆(ξξξ )

}
and the supremum is attained.



Theorem
Let be given:

▶ L and Λ, real vector spaces;

▶ ⟨·, ·⟩, a bilinear form on L×Λ;

▶ A : L →Rd, a linear mapping;

▶ F : L → (−∞,∞], a proper convex function;

▶ g : Rd → [−∞,∞), a proper concave function.

Assume that A admits a formal adjoint mappingA⋆, that is, a linear
mapping A⋆ : Rd → Λ such that ⟨Ax,y⟩= ⟨x,A⋆y⟩ for every x ∈ L and
every y ∈Rd. Then, under the qualification condition

(QC) ri(AdomF)∩ ri(domg) ̸= /0,

one has

η := inf
x∈X

{
F(x)−g(Ax)

}
= max

λλλ∈Rd

{
g⋆(λλλ )−F⋆(A⋆

λλλ )
}
.



The optimization problems

Minimize (F−g◦A) and Maximize (g⋆−F⋆ ◦A⋆)

are respectively referred to as the primal and dual problems.

The function D := g⋆−F⋆ ◦A⋆ is referred to as the dual function.
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are respectively referred to as the primal and dual problems.

The function D := g⋆−F⋆ ◦A⋆ is referred to as the dual function.



Theorem (Primal attainment)

With the notation and assumptions of the previous theorem, assume in
addition that

(QC⋆) ridomg⋆∩ ridom(F⋆ ◦A⋆) ̸= /0.

Suppose further that

(a) F⋆⋆ = F and g⋆⋆ = g;

(b) there exists λ̄λλ dual optimal and x̄ ∈ ∂F⋆(A⋆λ̄λλ ) such that F⋆ ◦A⋆ has
gradient Ax̄ at λ̄λλ .

Then x̄ is primal optimal.



Definition
An integral functional is a functional of the form

H (p) =
∫

V
h
(
p(x),x

)
dµ(x), u ∈ L.

Here, V is assumed to be endowed with a σ -algebra of measurable sets and
with a measure denoted by µ; the function h is called the integrand, and the
argument p is assumed to pertain to some space of measurable functions L.

In our case:

▶ L = L1,

▶ h
(
p(x),x

)
= h◦

(
p(x)

)
, with

h◦(t) =

 t ln t if t > 0,
0 if t = 0,
∞ t < 0.
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How to conjugate H ?

The answer lies in what is referred to as
conjugacy through the integral sign.

Definition
We say that a space L of measurable functions is decomposable if it is stable
under bounded alteration on sets of finite measure. Otherwise expressed, L is
decomposable if and only if it contains all functions of the form

1T ·p◦+1Tc ·p,

in which T has finite measure, p◦ is a measurable function such that the set
p◦(T) is bounded, and p is any member of L.

One can easily see that the familiar Lp-spaces are decomposable, which
includes our workspace L1(V,B, dx).
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One can easily see that the familiar Lp-spaces are decomposable, which
includes our workspace L1(V,B, dx).
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Theorem (Rockafellar)

Let L and Λ be spaces of measurable functions on Ω paired by means of the
standard integral bilinear form

⟨f ,ϕ⟩=
∫

V
f (x)ϕ(x)dx.

Let H be the functional of integrand h◦, that is,

H (p) =
∫

V
h◦(p(x))dx,

with h◦ proper convex and lower semi-continuous. Assume that L is
decomposable and that H has nonempty effective domain. Then

H ⋆(ϕ) =
∫

h⋆◦(ϕ(x))dx

for every ϕ ∈ Λ, and H ⋆ is convex on Λ.



Theorem (Primal-dual relationship)

With the notation and assumptions of the general Fenchel Theorem, assume
in addition that domD has nonempty interior, that H is an integral
functional of integrand h such that conjugacy through the integral sign is
permitted. Assume that, as requested in the primal attainment theorem,
H ⋆⋆ = H and g⋆⋆ = g. Assume finally that the conjugate integrand h⋆ is
differentiable over R, and that there exists some dual-optimal vector λ̄λλ in
intdomD. If

p̄(x) := h⋆′
(
[A⋆

λ̄λλ ](x),x
)
∈ L,

then p̄ is a primal solution.
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(P)

∣∣∣∣∣∣∣
Minimize H(p)+

α

2
∥z−Ap∥2

Σ−1

s.t. 1 =
∫ 2π

0
p(θ)dθ ,

Ip :=
∫ 2π

0
p(θ)dθ , p ∈ L1([0,2π)),

Problem (P) can be written as

Minimize H(p)−g◦(A◦p)

where
A◦p = (Ip;Ap) ∈R×R2N =R1+2N

and
g◦(η◦,ηηη) =−α

2
∥z−ηηη∥2

Σ−1 −δ{1}(η◦).
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The adjoint mapping A⋆
◦ : R1+2N → L∞([0,2π)) is given by

A⋆
◦(λ◦,λλλ )(θ) = λ◦+ ⟨λλλ ,γγγ(θ)⟩.

Moreover,

(g◦)⋆(λ◦,λλλ ) = λ◦+ ⟨z,λλλ ⟩− 1
2α

∥λλλ ∥2
Σ.

Accounting for conjugacy through the integral sign, the dual problem reads:

(D) Maximize λ◦+⟨λλλ ,z⟩− 1
2α

∥λλλ ∥2
Σ−exp(λ◦−1)

∫ 2π

0
exp⟨λλλ ,γγγ(θ)⟩dθ .
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The dual function is concave, finite and differentiable on R1+2N .

Optimality system:
0 = 1− exp(λ̄◦−1)

∫ 2π

0
exp⟨λ̄λλ ,γγγ(θ)⟩dθ ,

0 = z− 1
α

Σλ̄λλ − exp(λ̄◦−1)
∫ 2π

0
γγγ(θ)exp⟨λ̄λλ ,γγγ(θ)⟩dθ ,

The system reduces to

0 = z− 1
α

Σλ̄λλ −

∫ 2π

0
γγγ(θ)exp⟨λ̄λλ ,γγγ(θ)⟩dθ∫ 2π

0
exp⟨λ̄λλ ,γγγ(θ)⟩dθ

.

The above system is also the optimality system of the problem

(D̃) Maximize ⟨λλλ ,z⟩− 1
2α

∥λλλ ∥2
Σ − ln

∫ 2π

0
exp⟨λλλ ,γγγ(θ)⟩dθ
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Proposition

The function

D̃(λλλ ) := ⟨λλλ ,z⟩− 1
2α

∥λλλ ∥2
Σ − ln

∫ 2π

0
exp⟨λλλ ,γγγ(θ)⟩dθ

to be maximized in Problem (D̃) is concave, smooth and everywhere finite.
Its gradient is given by

∇D̃(λλλ ) = z− 1
α

Σλλλ −

∫ 2π

0
γγγ(θ)exp⟨λλλ ,γγγ(θ)⟩dθ∫ 2π

0
exp⟨λλλ ,γγγ(θ)⟩dθ

.



The function h⋆◦(τ) = exp(τ −1) obviously meets the requirements of the
primal-dual relationship theorem.

Provided we can obtain a dual
solution (λ̄◦, λ̄λλ ), the optimal density is then given by

p̄(θ) = exp
[
λ̄◦−1+ ⟨λ̄λλ ,γγγ(θ)⟩

]
=

exp⟨λ̄λλ ,γγγ(θ)⟩∫ 2π

0
exp⟨λ̄λλ ,γγγ(θ)⟩dθ

.
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Algorithm 1 Computing maximum entropy densities
1: Input: the range N, that is, the number of empirical (complex)

Fourier coefficients to be taken into account, and the data vector
z ∈R2N

2: Output: The maximum entropy probability angular distributions
in the cell under consideration

3: Maximize the dual functions

D̃(λλλ ) := ⟨λλλ ,z⟩− 1
2α

∥λλλ ∥2
Σ − ln

∫ 2π

0
exp⟨λλλ ,γγγ(θ)⟩dθ

4: From the dual optimal solutions λ̄λλ obtained in the previous step,
form the optimal densities

p̄(θ) =
exp⟨λ̄λλ ,γγγ(θ)⟩∫ 2π

0
exp⟨λ̄λλ ,γγγ(θ)⟩dθ



Introduction

Maximum entropy solutions
Review of convex analytic tools
Computations in our context

Simulations
How to choose N and α?
Validation with Dirac distributions



Introduction

Maximum entropy solutions
Review of convex analytic tools
Computations in our context

Simulations
How to choose N and α?
Validation with Dirac distributions



In the maximum entropy problem, the attach term

α

2
∥z−Ap∥2

Σ−1

depends of the choice of the highest frequency N to be accounted for, on the
estimation of the covariance matrix Σ and on the choice of the regularization
parameter α .



We observe that the Kullback-Leibler entropy of the true density p◦ relative
to the reconstructed density p decreases as N increases, and stabilizes
beyond some value of N.

Here, we see that there is no gain beyond N = 50.



We use the Morozov discrepancy principle:

the regularization parameter α should be such that the corre-
sponding solution p̄ should give a residual ∥z−Ap̄∥ equal to a
number strictly greater than, but close to, the estimated size ρ of
the error on the data.



Algorithm 2 Determining α using the Morozov discrepancy principle

1: Input: ρ , condition (e.g. 1.095ρ ≤ residual ≤ 1.105ρ), µ (e.g. µ

=1.2), maximum number of iterations Nmax
2: Output: Morozov value of α

3: Set i = 0, αmin = 0, αmax = ∞, α0 = 1
4: while condition is not satisfied and i < Nmax do
5: Compute the maximum entropy solution p̄αi

6: Compute the residual ∥z−Ap̄αi∥
7: if residual < 1.095ρ then
8: Set αmax = αi

9: Set αi+1 =
αmin+αmax

2
10: end if
11: if residual > 1.105ρ then
12: Set αmin = αi

13: Set αi+1 =

{
αmin+αmax

2 if αmax < ∞

µαi otherwise
14: end if
15: Set i = i +1
16: end while
17: Return last value of α



Choose the appropriate value for α:

Figure: Residual values when α values from 1 to 10000.
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We start by performing simulations. We shall:

(a) Generate an angular sample following a probability p◦;

(b) Compute the corresponding empirical Fourier coefficients;

(c) Compute the maximum entropy density that is compatible, in the
relaxed setting described above, with our empirical Fourier coefficients.



Given a specific simulation example based on the original probability p◦(θ)
with 2 peaks and β = 0.1.



For reconstruction between original and optimal densities with two peaks.
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